```{-# OPTIONS -fno-implicit-prelude -fglasgow-exts #-}
-- -fglasgow-exts for RULES
module Algebra.RealField where

import qualified Algebra.Field              as Field
import qualified Algebra.PrincipalIdealDomain as PID
import qualified Algebra.Real           as Real
import qualified Algebra.Ring           as Ring
import qualified Algebra.ToRational     as ToRational
import qualified Algebra.ToInteger      as ToInteger

import Algebra.Field          ((/), fromRational, )
import Algebra.RealIntegral   (quotRem, )
import Algebra.IntegralDomain (divMod, even, )
import Algebra.Ring           ((*), fromInteger, )
import Algebra.Additive       ((+), (-), negate, )
import Algebra.ZeroTestable   (isZero, )
import Algebra.ToInteger      (fromIntegral, )

import qualified Number.Ratio as Ratio
import Number.Ratio (T((:%)), Rational)

import Data.Int  (Int,  Int8,  Int16,  Int32,  Int64,  )
import Data.Word (Word, Word8, Word16, Word32, Word64, )

import qualified GHC.Float as GHC
import NumericPrelude.Tuple (mapFst, )
import Prelude(Int, Integer, Float, Double)
import qualified Prelude as P
import PreludeBase

{- |
Minimal complete definition:
'splitFraction' or 'floor'

There are probably more laws, but some laws are

> (fromInteger.fst.splitFraction) a + (snd.splitFraction) a === a
>    ceiling (toRational x) === ceiling x :: Integer
>   truncate (toRational x) === truncate x :: Integer
>      floor (toRational x) === floor x :: Integer

If there wouldn't be @Real.C a@ and @ToInteger.C b@ constraints,
we could also use this class for splitting ratios of polynomials.

As an aside, let me note the similarities
between @splitFraction x@ and @x divMod 1@ (if that were defined).
In particular, it might make sense to unify the rounding modes somehow.

IEEEFloat-specific calls are removed here (cf. 'Prelude.RealFloat')
so probably nobody will actually use this default definition.

Henning:
New function 'fraction' doesn't return the integer part of the number.
This also removes a type ambiguity if the integer part is not needed.

The new methods 'fraction' and 'splitFraction'
differ from 'Prelude.properFraction' semantics.
They always round to 'floor'.
This means that the fraction is always non-negative and
is always smaller than 1.
This is more useful in practice and
can be generalised to more than real numbers.
Since every 'Number.Ratio.T' denominator type supports 'Algebra.IntegralDomain.divMod',
every 'Number.Ratio.T' can provide 'fraction' and 'splitFraction',
e.g. fractions of polynomials.
However the ''integral'' part would not be of type class 'ToInteger.C'.

Can there be a separate class for
'fraction', 'splitFraction', 'floor' and 'ceiling'
since they do not need reals and their ordering?
-}

class (Real.C a, Field.C a) => C a where
splitFraction    :: (ToInteger.C b) => a -> (b,a)
fraction         ::                  a -> a
ceiling, floor   :: (ToInteger.C b) => a -> b
truncate, round  :: (ToInteger.C b) => a -> b

splitFraction x   =  (floor x, fraction x)

fraction x   =  x - fromInteger (floor x)

floor x      =  fromInteger (fst (splitFraction x))

ceiling x    =  - floor (-x)

--    truncate x   =  signum x * floor (abs x)
truncate x   =  if x>=0
then floor x
else ceiling x

round x      =  let (n,r) = splitFraction x
in  case compare r (1/2) of
LT -> n
EQ -> if even n then n else n+1
GT -> n+1

instance (ToInteger.C a, PID.C a) => C (Ratio.T a) where
splitFraction (x:%y) = (fromIntegral q, r:%y)
where (q,r) = divMod x y

instance C Float where
{-# INLINE splitFraction #-}
{-# INLINE fraction #-}
{-# INLINE floor #-}
{-# INLINE ceiling #-}
{-# INLINE round #-}
{-# INLINE truncate #-}
splitFraction = fastSplitFraction GHC.float2Int GHC.int2Float
fraction      = fastFraction (GHC.int2Float . GHC.float2Int)
floor         = fromInteger . P.floor
ceiling       = fromInteger . P.ceiling
round         = fromInteger . P.round
truncate      = fromInteger . P.truncate

instance C Double where
{-# INLINE splitFraction #-}
{-# INLINE fraction #-}
{-# INLINE floor #-}
{-# INLINE ceiling #-}
{-# INLINE round #-}
{-# INLINE truncate #-}
splitFraction = fastSplitFraction GHC.double2Int GHC.int2Double
fraction      = fastFraction (GHC.int2Double . GHC.double2Int)
floor         = fromInteger . P.floor
ceiling       = fromInteger . P.ceiling
round         = fromInteger . P.round
truncate      = fromInteger . P.truncate

{-# INLINE fastSplitFraction #-}
fastSplitFraction :: (P.RealFrac a, Real.C a, ToInteger.C b) =>
(a -> Int) -> (Int -> a) -> a -> (b,a)
fastSplitFraction trunc toFloat x =
fixSplitFraction \$
if toFloat minBound <= x && x <= toFloat maxBound
then case trunc x of n -> (fromIntegral n, x - toFloat n)
else case P.properFraction x of (n,f) -> (fromInteger n, f)

{-# fixSplitFraction #-}
fixSplitFraction :: (Ring.C a, Ring.C b, Ord a) => (b,a) -> (b,a)
fixSplitFraction (n,f) =
--  if x>=0 || f==0
if f>=0
then (n,   f)
else (n-1, f+1)

{-# INLINE fastFraction #-}
fastFraction :: (P.RealFrac a, Real.C a) => (a -> a) -> a -> a
fastFraction trunc x =
fixFraction \$
if fromIntegral (minBound :: Int) <= x && x <= fromIntegral (maxBound :: Int)
then x - trunc x
else preludeFraction x

{-# INLINE preludeFraction #-}
preludeFraction :: (P.RealFrac a, Ring.C a) => a -> a
preludeFraction x =
let second :: (Integer, a) -> a
second = snd
in  second (P.properFraction x)

{-# INLINE fixFraction #-}
fixFraction :: (Ring.C a, Ord a) => a -> a
fixFraction y =
if y>=0 then y else y+1

{-
mapM_ (\n -> let x = fromInteger n / 10 in print (x, floorInt GHC.double2Int GHC.int2Double x)) [-20,-19..20]
-}

{-# INLINE splitFractionInt #-}
splitFractionInt :: (Ring.C a, Ord a) => (a -> Int) -> (Int -> a) -> a -> (Int, a)
splitFractionInt trunc toFloat x =
let n = trunc x
in  fixSplitFraction (n, x - toFloat n)

{-# INLINE floorInt #-}
floorInt :: (Ring.C a, Ord a) => (a -> Int) -> (Int -> a) -> a -> Int
floorInt trunc toFloat x =
let n = trunc x
in  if x >= toFloat n
then n
else pred n

{-# INLINE ceilingInt #-}
ceilingInt :: (Ring.C a, Ord a) => (a -> Int) -> (Int -> a) -> a -> Int
ceilingInt trunc toFloat x =
let n = trunc x
in  if x <= toFloat n
then n
else succ n

{-# INLINE roundInt #-}
roundInt :: (Field.C a, Ord a) => (a -> Int) -> (Int -> a) -> a -> Int
roundInt trunc toFloat x =
let half = 0.5 -- P.fromRational
halfUp = x+half
n = floorInt trunc toFloat halfUp
in  if toFloat n == halfUp  &&  P.odd n
then pred n
else n

{-# RULEZ maybe used, when Prelude implementations become more efficient
"NP.round    :: Float -> Int"    round    = P.round    :: Float -> Int;
"NP.truncate :: Float -> Int"    truncate = P.truncate :: Float -> Int;
"NP.floor    :: Float -> Int"    floor    = P.floor    :: Float -> Int;
"NP.ceiling  :: Float -> Int"    ceiling  = P.ceiling  :: Float -> Int;
"NP.round    :: Double -> Int"   round    = P.round    :: Double -> Int;
"NP.truncate :: Double -> Int"   truncate = P.truncate :: Double -> Int;
"NP.floor    :: Double -> Int"   floor    = P.floor    :: Double -> Int;
"NP.ceiling  :: Double -> Int"   ceiling  = P.ceiling  :: Double -> Int;
#-}

-- these rules will also be needed for Int16 et.al.
{-# RULES
"NP.round    :: Float -> Int"    round    = roundInt    GHC.float2Int  GHC.int2Float;
"NP.truncate :: Float -> Int"    truncate =             GHC.float2Int               ;
"NP.floor    :: Float -> Int"    floor    = floorInt    GHC.float2Int  GHC.int2Float;
"NP.ceiling  :: Float -> Int"    ceiling  = ceilingInt  GHC.float2Int  GHC.int2Float;
"NP.round    :: Double -> Int"   round    = roundInt    GHC.double2Int GHC.int2Double;
"NP.truncate :: Double -> Int"   truncate =             GHC.double2Int               ;
"NP.floor    :: Double -> Int"   floor    = floorInt    GHC.double2Int GHC.int2Double;
"NP.ceiling  :: Double -> Int"   ceiling  = ceilingInt  GHC.double2Int GHC.int2Double;

"NP.splitFraction :: Float ->  (Int, Float)"  splitFraction = splitFractionInt GHC.float2Int GHC.int2Float;
"NP.splitFraction :: Double -> (Int, Double)" splitFraction = splitFractionInt GHC.double2Int GHC.int2Double;
#-}

-- generated by GenerateRules.hs
{-# RULES
"NP.round    :: a -> Int8"    round    = (P.fromIntegral :: Int -> Int8) . round;
"NP.truncate :: a -> Int8"    truncate = (P.fromIntegral :: Int -> Int8) . truncate;
"NP.floor    :: a -> Int8"    floor    = (P.fromIntegral :: Int -> Int8) . floor;
"NP.ceiling  :: a -> Int8"    ceiling  = (P.fromIntegral :: Int -> Int8) . ceiling;
"NP.round    :: a -> Int16"   round    = (P.fromIntegral :: Int -> Int16) . round;
"NP.truncate :: a -> Int16"   truncate = (P.fromIntegral :: Int -> Int16) . truncate;
"NP.floor    :: a -> Int16"   floor    = (P.fromIntegral :: Int -> Int16) . floor;
"NP.ceiling  :: a -> Int16"   ceiling  = (P.fromIntegral :: Int -> Int16) . ceiling;
"NP.round    :: a -> Int32"   round    = (P.fromIntegral :: Int -> Int32) . round;
"NP.truncate :: a -> Int32"   truncate = (P.fromIntegral :: Int -> Int32) . truncate;
"NP.floor    :: a -> Int32"   floor    = (P.fromIntegral :: Int -> Int32) . floor;
"NP.ceiling  :: a -> Int32"   ceiling  = (P.fromIntegral :: Int -> Int32) . ceiling;
"NP.round    :: a -> Int64"   round    = (P.fromIntegral :: Int -> Int64) . round;
"NP.truncate :: a -> Int64"   truncate = (P.fromIntegral :: Int -> Int64) . truncate;
"NP.floor    :: a -> Int64"   floor    = (P.fromIntegral :: Int -> Int64) . floor;
"NP.ceiling  :: a -> Int64"   ceiling  = (P.fromIntegral :: Int -> Int64) . ceiling;
"NP.round    :: a -> Word"    round    = (P.fromIntegral :: Int -> Word) . round;
"NP.truncate :: a -> Word"    truncate = (P.fromIntegral :: Int -> Word) . truncate;
"NP.floor    :: a -> Word"    floor    = (P.fromIntegral :: Int -> Word) . floor;
"NP.ceiling  :: a -> Word"    ceiling  = (P.fromIntegral :: Int -> Word) . ceiling;
"NP.round    :: a -> Word8"   round    = (P.fromIntegral :: Int -> Word8) . round;
"NP.truncate :: a -> Word8"   truncate = (P.fromIntegral :: Int -> Word8) . truncate;
"NP.floor    :: a -> Word8"   floor    = (P.fromIntegral :: Int -> Word8) . floor;
"NP.ceiling  :: a -> Word8"   ceiling  = (P.fromIntegral :: Int -> Word8) . ceiling;
"NP.round    :: a -> Word16"  round    = (P.fromIntegral :: Int -> Word16) . round;
"NP.truncate :: a -> Word16"  truncate = (P.fromIntegral :: Int -> Word16) . truncate;
"NP.floor    :: a -> Word16"  floor    = (P.fromIntegral :: Int -> Word16) . floor;
"NP.ceiling  :: a -> Word16"  ceiling  = (P.fromIntegral :: Int -> Word16) . ceiling;
"NP.round    :: a -> Word32"  round    = (P.fromIntegral :: Int -> Word32) . round;
"NP.truncate :: a -> Word32"  truncate = (P.fromIntegral :: Int -> Word32) . truncate;
"NP.floor    :: a -> Word32"  floor    = (P.fromIntegral :: Int -> Word32) . floor;
"NP.ceiling  :: a -> Word32"  ceiling  = (P.fromIntegral :: Int -> Word32) . ceiling;
"NP.round    :: a -> Word64"  round    = (P.fromIntegral :: Int -> Word64) . round;
"NP.truncate :: a -> Word64"  truncate = (P.fromIntegral :: Int -> Word64) . truncate;
"NP.floor    :: a -> Word64"  floor    = (P.fromIntegral :: Int -> Word64) . floor;
"NP.ceiling  :: a -> Word64"  ceiling  = (P.fromIntegral :: Int -> Word64) . ceiling;

"NP.splitFraction :: a -> (Int8,a)"     splitFraction = mapFst (P.fromIntegral :: Int -> Int8) . splitFraction;
"NP.splitFraction :: a -> (Int16,a)"    splitFraction = mapFst (P.fromIntegral :: Int -> Int16) . splitFraction;
"NP.splitFraction :: a -> (Int32,a)"    splitFraction = mapFst (P.fromIntegral :: Int -> Int32) . splitFraction;
"NP.splitFraction :: a -> (Int64,a)"    splitFraction = mapFst (P.fromIntegral :: Int -> Int64) . splitFraction;
"NP.splitFraction :: a -> (Word,a)"     splitFraction = mapFst (P.fromIntegral :: Int -> Word) . splitFraction;
"NP.splitFraction :: a -> (Word8,a)"    splitFraction = mapFst (P.fromIntegral :: Int -> Word8) . splitFraction;
"NP.splitFraction :: a -> (Word16,a)"   splitFraction = mapFst (P.fromIntegral :: Int -> Word16) . splitFraction;
"NP.splitFraction :: a -> (Word32,a)"   splitFraction = mapFst (P.fromIntegral :: Int -> Word32) . splitFraction;
"NP.splitFraction :: a -> (Word64,a)"   splitFraction = mapFst (P.fromIntegral :: Int -> Word64) . splitFraction;
#-}

{- | TODO: Should be moved to a continued fraction module. -}

approxRational :: (ToRational.C a, C a) => a -> a -> Rational
approxRational rat eps    =  simplest (rat-eps) (rat+eps)
where simplest x y | y < x      =  simplest y x
| x == y     =  xr
| x > 0      =  simplest' n d n' d'
| y < 0      =  - simplest' (-n') d' (-n) d
| otherwise  =  0 :% 1
where xr@(n:%d) = ToRational.toRational x
(n':%d')  = ToRational.toRational y

simplest' n d n' d'       -- assumes 0 < n%d < n'%d'
| isZero r   =  q :% 1
| q /= q'    =  (q+1) :% 1
| otherwise  =  (q*n''+d'') :% n''
where (q,r)      =  quotRem n d
(q',r')    =  quotRem n' d'
(n'':%d'') =  simplest' d' r' d r

```