module Number.ResidueClass.Func where
import qualified Number.ResidueClass as Res
import qualified Algebra.PrincipalIdealDomain as PID
import qualified Algebra.IntegralDomain as Integral
import qualified Algebra.Field as Field
import qualified Algebra.Ring as Ring
import qualified Algebra.Additive as Additive
import PreludeBase
import NumericPrelude hiding (zero, one, )
import qualified Prelude as P
import qualified NumericPrelude as NP
newtype T a = Cons (a -> a)
concrete :: a -> T a -> a
concrete m (Cons r) = r m
fromRepresentative :: (Integral.C a) => a -> T a
fromRepresentative = Cons . mod
lift0 :: (a -> a) -> T a
lift0 = Cons
lift1 :: (a -> a -> a) -> T a -> T a
lift1 f (Cons x) = Cons $ \m -> f m (x m)
lift2 :: (a -> a -> a -> a) -> T a -> T a -> T a
lift2 f (Cons x) (Cons y) = Cons $ \m -> f m (x m) (y m)
zero :: (Additive.C a) => T a
zero = Cons $ const Additive.zero
one :: (Ring.C a) => T a
one = Cons $ const NP.one
fromInteger :: (Integral.C a) => Integer -> T a
fromInteger = fromRepresentative . NP.fromInteger
equal :: Eq a => a -> T a -> T a -> Bool
equal m (Cons x) (Cons y) = x m == y m
instance (Integral.C a) => Additive.C (T a) where
zero = zero
(+) = lift2 Res.add
() = lift2 Res.sub
negate = lift1 Res.neg
instance (Integral.C a) => Ring.C (T a) where
one = one
(*) = lift2 Res.mul
fromInteger = Number.ResidueClass.Func.fromInteger
instance (PID.C a) => Field.C (T a) where
(/) = lift2 Res.divide
recip = (NP.one /)
fromRational' = error "no conversion from rational to residue class"
legacyInstance :: a
legacyInstance =
error "legacy Ring.C instance for simple input of numeric literals"
instance (P.Num a, Integral.C a) => P.Num (T a) where
fromInteger = Number.ResidueClass.Func.fromInteger
negate = negate
(+) = legacyInstance
(*) = legacyInstance
abs = legacyInstance
signum = legacyInstance
instance Eq (T a) where
(==) = error "ResidueClass.Func: (==) not implemented"
instance Show (T a) where
show = error "ResidueClass.Func: 'show' not implemented"