numeric-prelude-0.1.3.4: An experimental alternative hierarchy of numeric type classes

MathObj.PowerSeries.Example

Synopsis

# Default implementations.

recip :: C a => [a]Source

sin :: C a => [a]Source

cos :: C a => [a]Source

log :: C a => [a]Source

asin :: C a => [a]Source

atan :: C a => [a]Source

sqrt :: C a => [a]Source

exp :: C a => [a]Source

acos :: C a => [a]Source

tan :: (C a, C a) => [a]Source

cosh :: C a => [a]Source

atanh :: C a => [a]Source

sinh :: C a => [a]Source

pow :: C a => a -> [a]Source

# Generate Taylor series explicitly.

recipExpl :: C a => [a]Source

sinExpl :: C a => [a]Source

cosExpl :: C a => [a]Source

expExpl :: C a => [a]Source

tanExplSieve :: (C a, C a) => [a]Source

tanExpl :: (C a, C a) => [a]Source

atanExpl :: C a => [a]Source

sqrtExpl :: C a => [a]Source

logExpl :: C a => [a]Source

coshExpl :: C a => [a]Source

atanhExpl :: C a => [a]Source

sinhExpl :: C a => [a]Source

# Power series of (1+x)^expon using the binomial series.

powExpl :: C a => a -> [a]Source

erf :: C a => [a]Source

Power series of error function (almost). More precisely ` erf = 2 / sqrt pi * integrate (x -> exp (-x^2)) `, with `erf 0 = 0`.

# Generate Taylor series from differential equations.

sinODE :: C a => [a]Source

cosODE :: C a => [a]Source

tanODE :: C a => [a]Source

tanODESieve :: C a => [a]Source

expODE :: C a => [a]Source

recipCircle :: C a => [a]Source

asinODE :: C a => [a]Source

atanODE :: C a => [a]Source

sqrtODE :: C a => [a]Source

logODE :: C a => [a]Source

acosODE :: C a => [a]Source

coshODE :: C a => [a]Source

atanhODE :: C a => [a]Source

sinhODE :: C a => [a]Source

powODE :: C a => a -> [a]Source