{-# LANGUAGE RebindableSyntax #-} module Algebra.Absolute ( C(abs, signum), absOrd, signumOrd, ) where import qualified Algebra.Ring as Ring import qualified Algebra.Additive as Additive import qualified Algebra.ZeroTestable as ZeroTestable import Algebra.Ring (one, ) -- fromInteger import Algebra.Additive (zero, negate,) import Data.Int (Int, Int8, Int16, Int32, Int64, ) import Data.Word (Word, Word8, Word16, Word32, Word64, ) import NumericPrelude.Base import qualified Prelude as P import Prelude (Integer, Float, Double, ) {- | This is the type class of a ring with a notion of an absolute value, satisfying the laws > a * b === b * a > a /= 0 => abs (signum a) === 1 > abs a * signum a === a Minimal definition: 'abs', 'signum'. If the type is in the 'Ord' class we expect 'abs' = 'absOrd' and 'signum' = 'signumOrd' and we expect the following laws to hold: > a + (max b c) === max (a+b) (a+c) > negate (max b c) === min (negate b) (negate c) > a * (max b c) === max (a*b) (a*c) where a >= 0 > absOrd a === max a (-a) We do not require 'Ord' as superclass since we also want to have "Number.Complex" as instance. 'abs' for complex numbers alone may have an inappropriate type, because it does not reflect that the absolute value is a real number. You might prefer 'Number.Complex.magnitude'. This type class is intended for unifying algorithms that work for both real and complex numbers. Note the similarity to "Algebra.Units": 'abs' plays the role of @stdAssociate@ and 'signum' plays the role of @stdUnit@. Actually, since 'abs' can be defined using 'max' and 'negate' we could relax the superclasses to @Additive@ and 'Ord' if his class would only contain 'signum'. -} class (Ring.C a, ZeroTestable.C a) => C a where abs :: a -> a signum :: a -> a absOrd :: (Additive.C a, Ord a) => a -> a absOrd x = max x (negate x) signumOrd :: (Ring.C a, Ord a) => a -> a signumOrd x = case compare x zero of GT -> one EQ -> zero LT -> negate one instance C Integer where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Float where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Double where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Int where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Int8 where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Int16 where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Int32 where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Int64 where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Word where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Word8 where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Word16 where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Word32 where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum instance C Word64 where {-# INLINE abs #-} {-# INLINE signum #-} abs = P.abs signum = P.signum