numeric-prelude-0.4.3.1: An experimental alternative hierarchy of numeric type classes

Number.PartiallyTranscendental

Description

Define Transcendental functions on arbitrary fields. These functions are defined for only a few (in most cases only one) arguments, that's why we discourage making these types instances of C. But instances of C can be useful when working with power series. If you intend to work with power series with Rational coefficients, you might consider using MathObj.PowerSeries.T (Number.PartiallyTranscendental.T Rational) instead of MathObj.PowerSeries.T Rational.

# Documentation

data T a Source #

Instances
 Eq a => Eq (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methods(==) :: T a -> T a -> Bool #(/=) :: T a -> T a -> Bool # Fractional a => Fractional (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methods(/) :: T a -> T a -> T a #recip :: T a -> T a # Num a => Num (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methods(+) :: T a -> T a -> T a #(-) :: T a -> T a -> T a #(*) :: T a -> T a -> T a #negate :: T a -> T a #abs :: T a -> T a #signum :: T a -> T a #fromInteger :: Integer -> T a # Ord a => Ord (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methodscompare :: T a -> T a -> Ordering #(<) :: T a -> T a -> Bool #(<=) :: T a -> T a -> Bool #(>) :: T a -> T a -> Bool #(>=) :: T a -> T a -> Bool #max :: T a -> T a -> T a #min :: T a -> T a -> T a # Show a => Show (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental MethodsshowsPrec :: Int -> T a -> ShowS #show :: T a -> String #showList :: [T a] -> ShowS # C a => C (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methodszero :: T a Source #(+) :: T a -> T a -> T a Source #(-) :: T a -> T a -> T a Source #negate :: T a -> T a Source # C a => C (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methods(*) :: T a -> T a -> T a Source #one :: T a Source #(^) :: T a -> Integer -> T a Source # C a => C (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methods(/) :: T a -> T a -> T a Source #recip :: T a -> T a Source #(^-) :: T a -> Integer -> T a Source # C a => C (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methodssqrt :: T a -> T a Source #root :: Integer -> T a -> T a Source #(^/) :: T a -> Rational -> T a Source # (C a, Eq a) => C (T a) Source # Instance detailsDefined in Number.PartiallyTranscendental Methodspi :: T a Source #exp :: T a -> T a Source #log :: T a -> T a Source #logBase :: T a -> T a -> T a Source #(**) :: T a -> T a -> T a Source #sin :: T a -> T a Source #cos :: T a -> T a Source #tan :: T a -> T a Source #asin :: T a -> T a Source #acos :: T a -> T a Source #atan :: T a -> T a Source #sinh :: T a -> T a Source #cosh :: T a -> T a Source #tanh :: T a -> T a Source #asinh :: T a -> T a Source #acosh :: T a -> T a Source #atanh :: T a -> T a Source #

fromValue :: a -> T a Source #

toValue :: T a -> a Source #