module Control.NumericalMonad.State.Strict where --import Data.Functor.Identity import Control.Monad.Trans.Class import Control.Monad.IO.Class import Control.Applicative import Control.Monad import Control.Monad.Fix {- This module is a private copy of the Strict State Monad by Ross Patterson, patched to unconditionally inline. Its only purpose is to ensure that certain generic routines in Numerical.Array.Shape will compositionally unconditionally inline in their use sites ONLY use if writing generic code in your inner loops -} import Data.Foldable (Foldable(foldMap)) import Data.Traversable (Traversable(traverse)) -- | Identity functor and monad. newtype Identity a = Identity { runIdentity :: a } -- --------------------------------------------------------------------------- -- Identity instances for Functor and Monad instance Functor Identity where fmap f m = Identity (f (runIdentity m)) {-# INLINE fmap #-} instance Foldable Identity where foldMap f (Identity x) = f x {-# INLINE foldMap #-} instance Traversable Identity where traverse f (Identity x) = Identity <$> f x {-# INLINE traverse #-} instance Applicative Identity where pure a = Identity a {-# INLINE pure #-} Identity f <*> Identity x = Identity (f x) {-# INLINE (<*>) #-} instance Monad Identity where return a = Identity a {-# INLINE return #-} m >>= k = k (runIdentity m) {-# INLINE (>>=)#-} instance MonadFix Identity where mfix f = Identity (fix (runIdentity . f)) {-# INLINE mfix #-} -- --------------------------------------------------------------------------- -- | A state monad parameterized by the type @s@ of the state to carry. -- -- The 'return' function leaves the state unchanged, while @>>=@ uses -- the final state of the first computation as the initial state of -- the second. type State s = StateT s Identity -- | Construct a state monad computation from a function. -- (The inverse of 'runState'.) state :: Monad m => (s -> (a, s)) -- ^pure state transformer -> StateT s m a -- ^equivalent state-passing computation state = \f -> StateT (return . f) {-# INLINE state #-} -- | Unwrap a state monad computation as a function. -- (The inverse of 'state'.) runState :: State s a -- ^state-passing computation to execute -> s -- ^initial state -> (a, s) -- ^return value and final state runState = \ m -> runIdentity . runStateT m {-# INLINE runState#-} -- | Evaluate a state computation with the given initial state -- and return the final value, discarding the final state. -- -- * @'evalState' m s = 'fst' ('runState' m s)@ evalState :: State s a -- ^state-passing computation to execute -> s -- ^initial value -> a -- ^return value of the state computation evalState = \m s -> fst (runState m s) {-# INLINE evalState #-} -- | Evaluate a state computation with the given initial state -- and return the final state, discarding the final value. -- -- * @'execState' m s = 'snd' ('runState' m s)@ execState :: State s a -- ^state-passing computation to execute -> s -- ^initial value -> s -- ^final state execState = \m s -> snd (runState m s) {-# INLINE execState#-} -- | Map both the return value and final state of a computation using -- the given function. -- -- * @'runState' ('mapState' f m) = f . 'runState' m@ mapState :: ((a, s) -> (b, s)) -> State s a -> State s b mapState = \ f -> mapStateT (Identity . f . runIdentity) {-# INLINE mapState #-} -- | @'withState' f m@ executes action @m@ on a state modified by -- applying @f@. -- -- * @'withState' f m = 'modify' f >> m@ withState :: (s -> s) -> State s a -> State s a withState = \f st -> withStateT f st {-# INLINE withState #-} -- --------------------------------------------------------------------------- -- | A state transformer monad parameterized by: -- -- * @s@ - The state. -- -- * @m@ - The inner monad. -- -- The 'return' function leaves the state unchanged, while @>>=@ uses -- the final state of the first computation as the initial state of -- the second. newtype StateT s m a = StateT { runStateT :: s -> m (a,s) } -- | Evaluate a state computation with the given initial state -- and return the final value, discarding the final state. -- -- * @'evalStateT' m s = 'liftM' 'fst' ('runStateT' m s)@ evalStateT :: (Monad m) => StateT s m a -> s -> m a evalStateT = \ m s -> do (a, _) <- runStateT m s return a {-# INLINE evalStateT #-} -- | Evaluate a state computation with the given initial state -- and return the final state, discarding the final value. -- -- * @'execStateT' m s = 'liftM' 'snd' ('runStateT' m s)@ execStateT :: (Monad m) => StateT s m a -> s -> m s execStateT = \ m s -> do (_, s') <- runStateT m s return s' {-# INLINE execStateT #-} -- | Map both the return value and final state of a computation using -- the given function. -- -- * @'runStateT' ('mapStateT' f m) = f . 'runStateT' m@ mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b mapStateT = \ f m -> StateT $ f . runStateT m -- | @'withStateT' f m@ executes action @m@ on a state modified by -- applying @f@. -- -- * @'withStateT' f m = 'modify' f >> m@ withStateT :: (s -> s) -> StateT s m a -> StateT s m a withStateT = \ f m -> StateT $ runStateT m . f instance (Functor m) => Functor (StateT s m) where fmap = \ f m -> StateT $ \ s -> fmap (\ (a, s') -> (f a, s')) $ runStateT m s {-# INLINE fmap #-} instance (Functor m, Monad m) => Applicative (StateT s m) where pure = \ a ->return a (<*>) = \ a b -> ap a b instance (Functor m, MonadPlus m) => Alternative (StateT s m) where empty = mzero {-# INLINE empty #-} (<|>) = \ a b -> mplus a b {-#INLINE (<|>)#-} instance (Monad m) => Monad (StateT s m) where {-# INLINE return #-} return = \ a -> state $ \s -> (a, s) {-# INLINE (>>=)#-} (>>=) = \m k -> StateT $ \s -> do (a, s') <- runStateT m s runStateT (k a) s' fail str = StateT $ \_ -> fail str instance (MonadPlus m) => MonadPlus (StateT s m) where mzero = StateT $ \_ -> mzero {-# INLINE mzero #-} mplus = \ m n -> StateT $ \s -> runStateT m s `mplus` runStateT n s {-# INLINE mplus #-} instance (MonadFix m) => MonadFix (StateT s m) where mfix = \ f -> StateT $ \s -> mfix $ \ ~(a, _) -> runStateT (f a) s {-# INLINE mfix #-} instance MonadTrans (StateT s) where {-#INLINE lift #-} lift = \ m -> StateT $ \s -> do a <- m return (a, s) instance (MonadIO m) => MonadIO (StateT s m) where liftIO = lift . liftIO -- | Fetch the current value of the state within the monad. get :: (Monad m) => StateT s m s get = state $ \s -> (s, s) {-# INLINE get #-} -- | @'put' s@ sets the state within the monad to @s@. put :: (Monad m) => s -> StateT s m () put = \s -> state $ \_ -> ((), s) {-# INLINE put #-} -- | @'modify' f@ is an action that updates the state to the result of -- applying @f@ to the current state. -- -- * @'modify' f = 'get' >>= ('put' . f)@ modify :: (Monad m) => (s -> s) -> StateT s m () modify = \f -> state $ \s -> ((), f s) {-# INLINE modify #-} -- | A variant of 'modify' in which the computation is strict in the -- new state. -- -- * @'modify'' f = 'get' >>= (('$!') 'put' . f)@ modify' :: (Monad m) => (s -> s) -> StateT s m () modify' f = do s <- get put $! f s {-# INLINE modify' #-} -- | Get a specific component of the state, using a projection function -- supplied. -- -- * @'gets' f = 'liftM' f 'get'@ gets :: (Monad m) => (s -> a) -> StateT s m a gets = \ f -> state $ \s -> (f s, s) {-# INLINE gets #-}