{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE NoImplicitPrelude #-} {-# OPTIONS_GHC -Wall #-} module NumHask.Data.Complex where import Data.Data (Data) import GHC.Generics (Generic, Generic1) import NumHask.Algebra.Abstract.Additive import NumHask.Algebra.Abstract.Field import NumHask.Algebra.Abstract.Lattice import NumHask.Algebra.Abstract.Multiplicative import NumHask.Algebra.Abstract.Ring import NumHask.Analysis.Metric import NumHask.Data.Integral import Prelude hiding (Num(..), (/), atan, cos, exp, log, negate, pi, recip, sin, sqrt) import qualified Prelude as P (Ord(..), (&&), (<), (<=), (==), (>), otherwise) -- ----------------------------------------------------------------------------- -- The Complex type infix 6 :+ -- | Complex numbers are an algebraic type. -- -- For a complex number @z@, @'abs' z@ is a number with the magnitude of @z@, -- but oriented in the positive real direction, whereas @'sign' z@ -- has the phase of @z@, but unit magnitude. -- -- The 'Foldable' and 'Traversable' instances traverse the real part first. data Complex a = !a :+ !a -- ^ forms a complex number from its real and imaginary -- rectangular components. deriving ( Eq , Show , Read , Data , Generic , Generic1 , Functor , Foldable , Traversable ) -- | Extracts the real part of a complex number. realPart :: Complex a -> a realPart (x :+ _) = x -- | Extracts the imaginary part of a complex number. imagPart :: Complex a -> a imagPart (_ :+ y) = y instance (Additive a) => Additive (Complex a) where (rx :+ ix) + (ry :+ iy) = (rx + ry) :+ (ix + iy) zero = zero :+ zero instance (Subtractive a) => Subtractive (Complex a) where negate (rx :+ ix) = negate rx :+ negate ix instance (Distributive a, Subtractive a) => Distributive (Complex a) instance (Subtractive a, Multiplicative a) => Multiplicative (Complex a) where (rx :+ ix) * (ry :+ iy) = (rx * ry - ix * iy) :+ (ix * ry + iy * rx) one = one :+ zero instance (Subtractive a, Divisive a) => Divisive (Complex a) where recip (rx :+ ix) = (rx * d) :+ (negate ix * d) where d = recip ((rx * rx) + (ix * ix)) instance (Additive a, FromIntegral a b) => FromIntegral (Complex a) b where fromIntegral_ x = fromIntegral_ x :+ zero instance (Multiplicative a, ExpField a, Normed a a) => Normed (Complex a) a where normL1 (rx :+ ix) = normL1 rx + normL1 ix normL2 (rx :+ ix) = sqrt (rx * rx + ix * ix) instance (Multiplicative a, Subtractive a, ExpField a, Normed a a) => Metric (Complex a) a where distanceL1 a b = normL1 (a - b) distanceL2 a b = normL2 (a - b) instance (Ord a, Signed a, Subtractive a, Epsilon a) => Epsilon (Complex a) where epsilon = epsilon :+ epsilon nearZero (a :+ b) = nearZero a && nearZero b instance (IntegralDomain a, Subtractive a) => IntegralDomain (Complex a) instance (Field a, Subtractive a) => Field (Complex a) instance (Ord a, TrigField a, ExpField a, Subtractive a) => ExpField (Complex a) where exp (rx :+ ix) = (exp rx * cos ix) :+ (exp rx * sin ix) log (rx :+ ix) = log (sqrt (rx * rx + ix * ix)) :+ atan2' ix rx where atan2' y x | x P.> zero = atan (y / x) | x P.== zero P.&& y P.> zero = pi / (one + one) | x P.< one P.&& y P.> one = pi + atan (y / x) | (x P.<= zero P.&& y P.< zero) || (x P.< zero) = negate (atan2' (negate y) x) | y P.== zero = pi -- must be after the previous test on zero y | x P.== zero P.&& y P.== zero = y -- must be after the other double zero tests | P.otherwise = x + y -- x or y is a NaN, return a NaN (via +) instance (Distributive a, Subtractive a) => InvolutiveRing (Complex a) where adj (a :+ b) = a :+ negate b instance (UpperBoundedField a, IntegralDomain a, Subtractive a) => UpperBoundedField (Complex a) instance (LowerBoundedField a) => LowerBoundedField (Complex a) instance (JoinSemiLattice a) => JoinSemiLattice (Complex a) where (\/) (ar :+ ai) (br :+ bi) = (ar \/ br) :+ (ai \/ bi) instance (MeetSemiLattice a) => MeetSemiLattice (Complex a) where (/\) (ar :+ ai) (br :+ bi) = (ar /\ br) :+ (ai /\ bi) instance (BoundedJoinSemiLattice a) => BoundedJoinSemiLattice (Complex a) where bottom = bottom :+ bottom instance (BoundedMeetSemiLattice a) => BoundedMeetSemiLattice (Complex a) where top = top :+ top -- * Helpers from Data.Complex mkPolar :: TrigField a => a -> a -> Complex a mkPolar r theta = (r * cos theta) :+ (r * sin theta) -- | @'cis' t@ is a complex value with magnitude @1@ -- and phase @t@ (modulo @2*'pi'@). {-# SPECIALISE cis :: Double -> Complex Double #-} cis :: TrigField a => a -> Complex a cis theta = cos theta :+ sin theta -- | The function 'polar' takes a complex number and -- returns a (magnitude, phase) pair in canonical form: -- the magnitude is nonnegative, and the phase in the range @(-'pi', 'pi']@; -- if the magnitude is zero, then so is the phase. {-# SPECIALISE polar :: Complex Double -> (Double, Double) #-} polar :: (RealFloat a, ExpField a) => Complex a -> (a, a) polar z = (magnitude z, phase z) -- | The nonnegative magnitude of a complex number. {-# SPECIALISE magnitude :: Complex Double -> Double #-} magnitude :: (ExpField a, RealFloat a) => Complex a -> a magnitude (x :+ y) = scaleFloat k (sqrt (sqr (scaleFloat mk x) + sqr (scaleFloat mk y))) where k = max (exponent x) (exponent y) mk = -k sqr z = z * z -- | The phase of a complex number, in the range @(-'pi', 'pi']@. -- If the magnitude is zero, then so is the phase. {-# SPECIALISE phase :: Complex Double -> Double #-} phase :: (RealFloat a) => Complex a -> a phase (0 :+ 0) = 0 -- SLPJ July 97 from John Peterson phase (x :+ y) = atan2 y x