{-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeApplications #-} {-# OPTIONS_GHC -Wall #-} -- | Field classes module NumHask.Algebra.Abstract.Field ( Field, ExpField (..), QuotientField (..), UpperBoundedField (..), LowerBoundedField (..), TrigField (..), half, ) where import Data.Bool (bool) import NumHask.Algebra.Abstract.Additive import NumHask.Algebra.Abstract.Multiplicative import NumHask.Algebra.Abstract.Ring import NumHask.Data.Integral import Prelude ((.)) import qualified Prelude as P -- | A is a set -- on which addition, subtraction, multiplication, and division are defined. It is also assumed that multiplication is distributive over addition. -- -- A summary of the rules thus inherited from super-classes of Field -- -- > zero + a == a -- > a + zero == a -- > (a + b) + c == a + (b + c) -- > a + b == b + a -- > a - a = zero -- > negate a = zero - a -- > negate a + a = zero -- > a + negate a = zero -- > one * a == a -- > a * one == a -- > (a * b) * c == a * (b * c) -- > a * (b + c) == a * b + a * c -- > (a + b) * c == a * c + b * c -- > a * zero == zero -- > zero * a == zero -- > a * b == b * a -- > a / a = one -- > recip a = one / a -- > recip a * a = one -- > a * recip a = one class (Distributive a, Subtractive a, Divisive a) => Field a instance Field P.Double instance Field P.Float instance Field b => Field (a -> b) -- | A hyperbolic field class -- -- > sqrt . (**2) == identity -- > log . exp == identity -- > for +ive b, a != 0,1: a ** logBase a b ≈ b class (Field a) => ExpField a where exp :: a -> a log :: a -> a logBase :: a -> a -> a logBase a b = log b / log a (**) :: a -> a -> a (**) a b = exp (log a * b) sqrt :: a -> a sqrt a = a ** (one / (one + one)) instance ExpField P.Double where exp = P.exp log = P.log (**) = (P.**) instance ExpField P.Float where exp = P.exp log = P.log (**) = (P.**) instance ExpField b => ExpField (a -> b) where exp f = exp . f log f = log . f logBase f f' a = logBase (f a) (f' a) f ** f' = \a -> f a ** f' a sqrt f = sqrt . f -- > a - one < floor a <= a <= ceiling a < a + one -- > round a == floor (a + one/(one+one)) -- class (Field a, Subtractive a, Multiplicative b, Additive b) => QuotientField a b where properFraction :: a -> (b, a) round :: a -> b default round :: (P.Ord a, P.Ord b, Subtractive b, Integral b) => a -> b round x = case properFraction x of (n, r) -> let m = bool (n + one) (n - one) (r P.< zero) half_down = abs' r - (one / (one + one)) abs' a | a P.< zero = negate a | P.otherwise = a in case P.compare half_down zero of P.LT -> n P.EQ -> bool m n (even n) P.GT -> m ceiling :: a -> b default ceiling :: (P.Ord a) => a -> b ceiling x = bool n (n + one) (r P.>= zero) where (n, r) = properFraction x floor :: a -> b default floor :: (P.Ord a, Subtractive b) => a -> b floor x = bool n (n - one) (r P.< zero) where (n, r) = properFraction x truncate :: a -> b default truncate :: (P.Ord a) => a -> b truncate x = bool (ceiling x) (floor x) (x P.> zero) instance QuotientField P.Float P.Integer where properFraction = P.properFraction instance QuotientField P.Double P.Integer where properFraction = P.properFraction instance QuotientField P.Float P.Int where properFraction = P.properFraction instance QuotientField P.Double P.Int where properFraction = P.properFraction instance QuotientField b c => QuotientField (a -> b) (a -> c) where properFraction f = (P.fst . frac, P.snd . frac) where frac a = properFraction @b @c (f a) round f = round . f ceiling f = ceiling . f floor f = floor . f truncate f = truncate . f -- | A bounded field includes the concepts of infinity and NaN, thus moving away from error throwing. -- -- > one / zero + infinity == infinity -- > infinity + a == infinity -- > zero / zero != nan -- -- Note the tricky law that, although nan is assigned to zero/zero, they are never-the-less not equal. A committee decided this. class (Field a) => UpperBoundedField a where infinity :: a infinity = one / zero nan :: a nan = zero / zero instance UpperBoundedField P.Float instance UpperBoundedField P.Double instance UpperBoundedField b => UpperBoundedField (a -> b) where infinity _ = infinity nan _ = nan class (Subtractive a, Field a) => LowerBoundedField a where negInfinity :: a negInfinity = negate (one / zero) instance LowerBoundedField P.Float instance LowerBoundedField P.Double instance LowerBoundedField b => LowerBoundedField (a -> b) where negInfinity _ = negInfinity -- | Trigonometric Field class (Field a) => TrigField a where pi :: a sin :: a -> a cos :: a -> a tan :: a -> a tan x = sin x / cos x asin :: a -> a acos :: a -> a atan :: a -> a sinh :: a -> a cosh :: a -> a tanh :: a -> a tanh x = sinh x / cosh x asinh :: a -> a acosh :: a -> a atanh :: a -> a instance TrigField P.Double where pi = P.pi sin = P.sin cos = P.cos asin = P.asin acos = P.acos atan = P.atan sinh = P.sinh cosh = P.cosh asinh = P.sinh acosh = P.acosh atanh = P.atanh instance TrigField P.Float where pi = P.pi sin = P.sin cos = P.cos asin = P.asin acos = P.acos atan = P.atan sinh = P.sinh cosh = P.cosh asinh = P.sinh acosh = P.acosh atanh = P.atanh instance TrigField b => TrigField (a -> b) where pi _ = pi sin f = sin . f cos f = cos . f asin f = asin . f acos f = acos . f atan f = atan . f sinh f = sinh . f cosh f = cosh . f asinh f = asinh . f acosh f = acosh . f atanh f = atanh . f -- | A 'half' is a 'Field' because it requires addition, multiplication and division to be computed. half :: (Field a) => a half = one / two