{-# LANGUAGE CPP #-}
-- | Main implementation of the OpenPGP message format <http://tools.ietf.org/html/rfc4880>
--
-- The recommended way to import this module is:
--
-- > import qualified Data.OpenPGP as OpenPGP
module Data.OpenPGP (
	Packet(
		AsymmetricSessionKeyPacket,
		OnePassSignaturePacket,
		SymmetricSessionKeyPacket,
		PublicKeyPacket,
		SecretKeyPacket,
		CompressedDataPacket,
		MarkerPacket,
		LiteralDataPacket,
		TrustPacket,
		UserIDPacket,
		EncryptedDataPacket,
		ModificationDetectionCodePacket,
		UnsupportedPacket,
		compression_algorithm,
		content,
		encrypted_data,
		filename,
		format,
		hash_algorithm,
		hashed_subpackets,
		hash_head,
		key,
		is_subkey,
		v3_days_of_validity,
		key_algorithm,
		key_id,
		message,
		nested,
		s2k_useage,
		s2k,
		signature,
		signature_type,
		symmetric_algorithm,
		timestamp,
		trailer,
		unhashed_subpackets,
		version
	),
	isSignaturePacket,
	signaturePacket,
	Message(..),
	SignatureSubpacket(..),
	S2K(..),
	string2key,
	HashAlgorithm(..),
	KeyAlgorithm(..),
	SymmetricAlgorithm(..),
	CompressionAlgorithm(..),
	RevocationCode(..),
	MPI(..),
	find_key,
	fingerprint_material,
	SignatureOver(..),
	signatures,
	signature_issuer,
	public_key_fields,
	secret_key_fields
) where

import Numeric
import Control.Monad
import Control.Arrow
import Control.Applicative
import Data.Monoid
import Data.Bits
import Data.Word
import Data.Char
import Data.List
import Data.OpenPGP.Internal
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as LZ

#ifdef CEREAL
import Data.Serialize hiding (decode)
import qualified Data.ByteString as B
import qualified Data.ByteString.UTF8 as B (toString, fromString)
#define BINARY_CLASS Serialize
#else
import Data.Binary hiding (decode)
import Data.Binary.Get
import Data.Binary.Put
import qualified Data.ByteString.Lazy as B
import qualified Data.ByteString.Lazy.UTF8 as B (toString, fromString)
#define BINARY_CLASS Binary
#endif

import qualified Codec.Compression.Zlib.Raw as Zip
import qualified Codec.Compression.Zlib as Zlib
import qualified Codec.Compression.BZip as BZip2

#ifdef CEREAL
getRemainingByteString :: Get B.ByteString
getRemainingByteString = remaining >>= getByteString

getSomeByteString :: Word64 -> Get B.ByteString
getSomeByteString = getByteString . fromIntegral

putSomeByteString :: B.ByteString -> Put
putSomeByteString = putByteString

localGet :: Get a -> B.ByteString -> Get a
localGet g bs = case runGet g bs of
	Left s -> fail s
	Right v -> return v

compress :: CompressionAlgorithm -> B.ByteString -> B.ByteString
compress algo = toStrictBS . lazyCompress algo . toLazyBS

decompress :: CompressionAlgorithm -> B.ByteString -> B.ByteString
decompress algo = toStrictBS . lazyDecompress algo . toLazyBS

toStrictBS :: LZ.ByteString -> B.ByteString
toStrictBS = B.concat . LZ.toChunks

toLazyBS :: B.ByteString -> LZ.ByteString
toLazyBS = LZ.fromChunks . (:[])

lazyEncode :: (Serialize a) => a -> LZ.ByteString
lazyEncode = toLazyBS . encode
#else
getRemainingByteString :: Get B.ByteString
getRemainingByteString = getRemainingLazyByteString

getSomeByteString :: Word64 -> Get B.ByteString
getSomeByteString = getLazyByteString . fromIntegral

putSomeByteString :: B.ByteString -> Put
putSomeByteString = putLazyByteString

localGet :: Get a -> B.ByteString -> Get a
localGet g bs = case runGetOrFail g bs of
	Left (_,_,s) -> fail s
	Right (leftover,_,v)
		| B.null leftover -> return v
		| otherwise -> fail $ "Leftover in localGet: " ++ show leftover

compress :: CompressionAlgorithm -> B.ByteString -> B.ByteString
compress = lazyCompress

decompress :: CompressionAlgorithm -> B.ByteString -> B.ByteString
decompress = lazyDecompress

lazyEncode :: (Binary a) => a -> LZ.ByteString
lazyEncode = encode
#endif

lazyCompress :: CompressionAlgorithm -> LZ.ByteString -> LZ.ByteString
lazyCompress Uncompressed = id
lazyCompress ZIP          = Zip.compress
lazyCompress ZLIB         = Zlib.compress
lazyCompress BZip2        = BZip2.compress
lazyCompress x            = error ("No implementation for " ++ show x)

lazyDecompress :: CompressionAlgorithm -> LZ.ByteString -> LZ.ByteString
lazyDecompress Uncompressed = id
lazyDecompress ZIP          = Zip.decompress
lazyDecompress ZLIB         = Zlib.decompress
lazyDecompress BZip2        = BZip2.decompress
lazyDecompress x            = error ("No implementation for " ++ show x)

assertProp :: (Monad m, Show a) => (a -> Bool) -> a -> m a
assertProp f x
	| f x = return $! x
	| otherwise = fail $ "Assertion failed for: " ++ show x

pad :: Int -> String -> String
pad l s = replicate (l - length s) '0' ++ s

padBS :: Int -> B.ByteString -> B.ByteString
padBS l s = B.replicate (fromIntegral l - B.length s) 0 `B.append` s

checksum :: B.ByteString -> Word16
checksum = fromIntegral .
	B.foldl (\c i -> (c + fromIntegral i) `mod` 65536) (0::Integer)

data Packet =
	AsymmetricSessionKeyPacket {
		version::Word8,
		key_id::String,
		key_algorithm::KeyAlgorithm,
		encrypted_data::B.ByteString
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.1>
	SignaturePacket {
		version::Word8,
		signature_type::Word8,
		key_algorithm::KeyAlgorithm,
		hash_algorithm::HashAlgorithm,
		hashed_subpackets::[SignatureSubpacket],
		unhashed_subpackets::[SignatureSubpacket],
		hash_head::Word16,
		signature::[MPI],
		trailer::B.ByteString
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.2>
	SymmetricSessionKeyPacket {
		version::Word8,
		symmetric_algorithm::SymmetricAlgorithm,
		s2k::S2K,
		encrypted_data::B.ByteString
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.3>
	OnePassSignaturePacket {
		version::Word8,
		signature_type::Word8,
		hash_algorithm::HashAlgorithm,
		key_algorithm::KeyAlgorithm,
		key_id::String,
		nested::Word8
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.4>
	PublicKeyPacket {
		version::Word8,
		timestamp::Word32,
		key_algorithm::KeyAlgorithm,
		key::[(Char,MPI)],
		is_subkey::Bool,
		v3_days_of_validity::Maybe Word16
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.5.1.1> (also subkey)
	SecretKeyPacket {
		version::Word8,
		timestamp::Word32,
		key_algorithm::KeyAlgorithm,
		key::[(Char,MPI)],
		s2k_useage::Word8,
		s2k::S2K, -- ^ This is meaningless if symmetric_algorithm == Unencrypted
		symmetric_algorithm::SymmetricAlgorithm,
		encrypted_data::B.ByteString,
		is_subkey::Bool
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.5.1.3> (also subkey)
	CompressedDataPacket {
		compression_algorithm::CompressionAlgorithm,
		message::Message
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.6>
	MarkerPacket | -- ^ <http://tools.ietf.org/html/rfc4880#section-5.8>
	LiteralDataPacket {
		format::Char,
		filename::String,
		timestamp::Word32,
		content::B.ByteString
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.9>
	TrustPacket B.ByteString | -- ^ <http://tools.ietf.org/html/rfc4880#section-5.10>
	UserIDPacket String | -- ^ <http://tools.ietf.org/html/rfc4880#section-5.11>
	EncryptedDataPacket {
		version::Word8,
		encrypted_data::B.ByteString
	} |
	-- ^ <http://tools.ietf.org/html/rfc4880#section-5.13>
	-- or <http://tools.ietf.org/html/rfc4880#section-5.7> when version is 0
	ModificationDetectionCodePacket B.ByteString | -- ^ <http://tools.ietf.org/html/rfc4880#section-5.14>
	UnsupportedPacket Word8 B.ByteString
	deriving (Show, Read, Eq)

instance BINARY_CLASS Packet where
	put p = do
		-- First two bits are 1 for new packet format
		put ((tag .|. 0xC0) :: Word8)
		case tag of
			19 -> put =<< assertProp (<192) (blen :: Word8)
			_  -> do
				-- Use 5-octet lengths
				put (255 :: Word8)
				put (blen :: Word32)
		putSomeByteString body
		where
		blen :: (Num a) => a
		blen = fromIntegral $ B.length body
		(body, tag) = put_packet p
	get = do
		tag <- get
		let (t, l) =
			if (tag .&. 64) /= 0 then
				(tag .&. 63, parse_new_length)
			else
				((tag `shiftR` 2) .&. 15, (,) <$> parse_old_length tag <*> pure False)
		packet <- uncurry get_packet_bytes =<< l
		localGet (parse_packet t) (B.concat packet)

get_packet_bytes :: Maybe Word32 -> Bool -> Get [B.ByteString]
get_packet_bytes len partial = do
	-- This forces the whole packet to be consumed
	packet <- maybe getRemainingByteString (getSomeByteString . fromIntegral) len
	if not partial then return [packet] else
		(packet:) <$> (uncurry get_packet_bytes =<< parse_new_length)

-- http://tools.ietf.org/html/rfc4880#section-4.2.2
parse_new_length :: Get (Maybe Word32, Bool)
parse_new_length = fmap (first Just) $ do
	len <- fmap fromIntegral (get :: Get Word8)
	case len of
		-- One octet length
		_ | len < 192 -> return (len, False)
		-- Two octet length
		_ | len > 191 && len < 224 -> do
			second <- fmap fromIntegral (get :: Get Word8)
			return (((len - 192) `shiftL` 8) + second + 192, False)
		-- Five octet length
		255 -> (,) <$> (get :: Get Word32) <*> pure False
		-- Partial length (streaming)
		_ | len >= 224 && len < 255 ->
			return (1 `shiftL` (fromIntegral len .&. 0x1F), True)
		_ -> fail "Unsupported new packet length."

-- http://tools.ietf.org/html/rfc4880#section-4.2.1
parse_old_length :: Word8 -> Get (Maybe Word32)
parse_old_length tag =
	case tag .&. 3 of
		-- One octet length
		0 -> fmap (Just . fromIntegral) (get :: Get Word8)
		-- Two octet length
		1 -> fmap (Just . fromIntegral) (get :: Get Word16)
		-- Four octet length
		2 -> fmap Just get
		-- Indeterminate length
		3 -> return Nothing
		-- Error
		_ -> fail "Unsupported old packet length."

-- http://tools.ietf.org/html/rfc4880#section-5.5.2
public_key_fields :: KeyAlgorithm -> [Char]
public_key_fields RSA     = ['n', 'e']
public_key_fields RSA_E   = public_key_fields RSA
public_key_fields RSA_S   = public_key_fields RSA
public_key_fields ELGAMAL = ['p', 'g', 'y']
public_key_fields DSA     = ['p', 'q', 'g', 'y']
public_key_fields _       = undefined -- Nothing in the spec. Maybe empty

-- http://tools.ietf.org/html/rfc4880#section-5.5.3
secret_key_fields :: KeyAlgorithm -> [Char]
secret_key_fields RSA     = ['d', 'p', 'q', 'u']
secret_key_fields RSA_E   = secret_key_fields RSA
secret_key_fields RSA_S   = secret_key_fields RSA
secret_key_fields ELGAMAL = ['x']
secret_key_fields DSA     = ['x']
secret_key_fields _       = undefined -- Nothing in the spec. Maybe empty

(!) :: (Eq k) => [(k,v)] -> k -> v
(!) xs k = let Just x = lookup k xs in x

-- Need this seperate for trailer calculation
signature_packet_start :: Packet -> B.ByteString
signature_packet_start (SignaturePacket {
	version = 4,
	signature_type = signature_type,
	key_algorithm = key_algorithm,
	hash_algorithm = hash_algorithm,
	hashed_subpackets = hashed_subpackets
}) =
	B.concat [
		encode (0x04 :: Word8),
		encode signature_type,
		encode key_algorithm,
		encode hash_algorithm,
		encode ((fromIntegral $ B.length hashed_subs) :: Word16),
		hashed_subs
	]
	where
	hashed_subs = B.concat $ map encode hashed_subpackets
signature_packet_start x =
	error ("Trying to get start of signature packet for: " ++ show x)

-- The trailer is just the top of the body plus some crap
calculate_signature_trailer :: Packet -> B.ByteString
calculate_signature_trailer (SignaturePacket { version = v,
                                               signature_type = signature_type,
                                               unhashed_subpackets = unhashed_subpackets
                                             }) | v `elem` [2,3] =
	B.concat [
		encode signature_type,
		encode creation_time
	]
	where
	Just (SignatureCreationTimePacket creation_time) = find isCreation unhashed_subpackets
	isCreation (SignatureCreationTimePacket {}) = True
	isCreation _ = False
calculate_signature_trailer p@(SignaturePacket {version = 4}) =
	B.concat [
		signature_packet_start p,
		encode (0x04 :: Word8),
		encode (0xff :: Word8),
		encode (fromIntegral (B.length $ signature_packet_start p) :: Word32)
	]
calculate_signature_trailer x =
	error ("Trying to calculate signature trailer for: " ++ show x)

put_packet :: Packet -> (B.ByteString, Word8)
put_packet (AsymmetricSessionKeyPacket version key_id key_algorithm dta) =
	(B.concat [
		encode version,
		encode (fst $ head $ readHex $ takeFromEnd 16 key_id :: Word64),
		encode key_algorithm,
		dta
	], 1)
put_packet (SignaturePacket { version = v,
                              unhashed_subpackets = unhashed_subpackets,
                              key_algorithm = key_algorithm,
                              hash_algorithm = hash_algorithm,
                              hash_head = hash_head,
                              signature = signature,
                              trailer = trailer }) | v `elem` [2,3] =
	-- TODO: Assert that there are no subpackets we cannot encode?
	(B.concat $ [
		B.singleton v,
		B.singleton 0x05,
		trailer, -- signature_type and creation_time
		encode keyid,
		encode key_algorithm,
		encode hash_algorithm,
		encode hash_head
	] ++ map encode signature, 2)
	where
	keyid = fst $ head $ readHex $ takeFromEnd 16 keyidS :: Word64
	Just (IssuerPacket keyidS) = find isIssuer unhashed_subpackets
	isIssuer (IssuerPacket {}) = True
	isIssuer _ = False
put_packet (SymmetricSessionKeyPacket version salgo s2k encd) =
	(B.concat [encode version, encode salgo, encode s2k, encd], 3)
put_packet (SignaturePacket { version = 4,
                              unhashed_subpackets = unhashed_subpackets,
                              hash_head = hash_head,
                              signature = signature,
                              trailer = trailer }) =
	(B.concat $ [
		trailer_top,
		encode (fromIntegral $ B.length unhashed :: Word16),
		unhashed, encode hash_head
	] ++ map encode signature, 2)
	where
	trailer_top = B.reverse $ B.drop 6 $ B.reverse trailer
	unhashed = B.concat $ map encode unhashed_subpackets
put_packet (OnePassSignaturePacket { version = version,
                                     signature_type = signature_type,
                                     hash_algorithm = hash_algorithm,
                                     key_algorithm = key_algorithm,
                                     key_id = key_id,
                                     nested = nested }) =
	(B.concat [
		encode version, encode signature_type,
		encode hash_algorithm, encode key_algorithm,
		encode (fst $ head $ readHex $ takeFromEnd 16 key_id :: Word64),
		encode nested
	], 4)
put_packet (SecretKeyPacket { version = version, timestamp = timestamp,
                              key_algorithm = algorithm, key = key,
                              s2k_useage = s2k_useage, s2k = s2k,
                              symmetric_algorithm = symmetric_algorithm,
                              encrypted_data = encrypted_data,
                              is_subkey = is_subkey }) =
	(B.concat $ p :
	(if s2k_useage `elem` [254,255] then
		[encode s2k_useage, encode symmetric_algorithm, encode s2k]
	else
		[encode symmetric_algorithm]
	) ++
	(if symmetric_algorithm /= Unencrypted then
		-- For V3 keys, the "encrypted data" has an unencrypted checksum
		-- of the unencrypted MPIs on the end
		[encrypted_data]
	else s ++
		[encode $ checksum $ B.concat s]),
	if is_subkey then 7 else 5)
	where
	p = fst (put_packet $
		PublicKeyPacket version timestamp algorithm key False Nothing)
	s = map (encode . (key !)) (secret_key_fields algorithm)
put_packet p@(PublicKeyPacket { version = v, timestamp = timestamp,
                              key_algorithm = algorithm, key = key,
                              is_subkey = is_subkey })
	| v == 3 =
		final (B.concat $ [
			B.singleton 3, encode timestamp,
			encode v3_days,
			encode algorithm
		] ++ material)
	| v == 4 =
		final (B.concat $ [
			B.singleton 4, encode timestamp, encode algorithm
		] ++ material)
	where
	Just v3_days = v3_days_of_validity p
	final x = (x, if is_subkey then 14 else 6)
	material = map (encode . (key !)) (public_key_fields algorithm)
put_packet (CompressedDataPacket { compression_algorithm = algorithm,
                                   message = message }) =
	(B.append (encode algorithm) $ compress algorithm $ encode message, 8)
put_packet MarkerPacket = (B.fromString "PGP", 10)
put_packet (LiteralDataPacket { format = format, filename = filename,
                                timestamp = timestamp, content = content
                              }) =
	(B.concat [
		encode format, encode filename_l, lz_filename,
		encode timestamp, content
	], 11)
	where
	filename_l  = (fromIntegral $ B.length lz_filename) :: Word8
	lz_filename = B.fromString filename
put_packet (TrustPacket bytes) = (bytes, 12)
put_packet (UserIDPacket txt) = (B.fromString txt, 13)
put_packet (EncryptedDataPacket 0 encrypted_data) = (encrypted_data, 9)
put_packet (EncryptedDataPacket version encrypted_data) =
	(B.concat [encode version, encrypted_data], 18)
put_packet (ModificationDetectionCodePacket bstr) = (bstr, 19)
put_packet (UnsupportedPacket tag bytes) = (bytes, fromIntegral tag)
put_packet x = error ("Unsupported Packet version or type in put_packet: " ++ show x)

parse_packet :: Word8 -> Get Packet
-- AsymmetricSessionKeyPacket, http://tools.ietf.org/html/rfc4880#section-5.1
parse_packet  1 = AsymmetricSessionKeyPacket
	<$> (assertProp (==3) =<< get)
	<*> fmap (pad 16 . map toUpper . flip showHex "") (get :: Get Word64)
	<*> get
	<*> getRemainingByteString
-- SignaturePacket, http://tools.ietf.org/html/rfc4880#section-5.2
parse_packet  2 = do
	version <- get
	case version of
		_ | version `elem` [2,3] -> do
			_ <- assertProp (==5) =<< (get :: Get Word8)
			signature_type <- get
			creation_time <- get :: Get Word32
			keyid <- get :: Get Word64
			key_algorithm <- get
			hash_algorithm <- get
			hash_head <- get
			signature <- listUntilEnd
			return SignaturePacket {
				version = version,
				signature_type = signature_type,
				key_algorithm = key_algorithm,
				hash_algorithm = hash_algorithm,
				hashed_subpackets = [],
				unhashed_subpackets = [
					SignatureCreationTimePacket creation_time,
					IssuerPacket $ pad 16 $ map toUpper $ showHex keyid ""
				],
				hash_head = hash_head,
				signature = signature,
				trailer = B.concat [encode signature_type, encode creation_time]
			}
		4 -> do
			signature_type <- get
			key_algorithm <- get
			hash_algorithm <- get
			hashed_size <- fmap fromIntegral (get :: Get Word16)
			hashed_data <- getSomeByteString hashed_size
			hashed <- localGet listUntilEnd hashed_data
			unhashed_size <- fmap fromIntegral (get :: Get Word16)
			unhashed_data <- getSomeByteString unhashed_size
			unhashed <- localGet listUntilEnd unhashed_data
			hash_head <- get
			signature <- listUntilEnd
			return SignaturePacket {
				version = version,
				signature_type = signature_type,
				key_algorithm = key_algorithm,
				hash_algorithm = hash_algorithm,
				hashed_subpackets = hashed,
				unhashed_subpackets = unhashed,
				hash_head = hash_head,
				signature = signature,
				trailer = B.concat [encode version, encode signature_type, encode key_algorithm, encode hash_algorithm, encode (fromIntegral hashed_size :: Word16), hashed_data, B.pack [4, 0xff], encode ((6 + fromIntegral hashed_size) :: Word32)]
			}
		x -> fail $ "Unknown SignaturePacket version " ++ show x ++ "."
-- SymmetricSessionKeyPacket, http://tools.ietf.org/html/rfc4880#section-5.3
parse_packet  3 = SymmetricSessionKeyPacket
	<$> (assertProp (==4) =<< get)
	<*> get
	<*> get
	<*> getRemainingByteString
-- OnePassSignaturePacket, http://tools.ietf.org/html/rfc4880#section-5.4
parse_packet  4 = do
	version <- get
	signature_type <- get
	hash_algo <- get
	key_algo <- get
	key_id <- get :: Get Word64
	nested <- get
	return OnePassSignaturePacket {
		version = version,
		signature_type = signature_type,
		hash_algorithm = hash_algo,
		key_algorithm = key_algo,
		key_id = pad 16 $ map toUpper $ showHex key_id "",
		nested = nested
	}
-- SecretKeyPacket, http://tools.ietf.org/html/rfc4880#section-5.5.3
parse_packet  5 = do
	-- Parse PublicKey part
	(PublicKeyPacket {
		version = version,
		timestamp = timestamp,
		key_algorithm = algorithm,
		key = key
	}) <- parse_packet 6
	s2k_useage <- get :: Get Word8
	let k = SecretKeyPacket version timestamp algorithm key s2k_useage
	(symmetric_algorithm, s2k) <- case () of
		_ | s2k_useage `elem` [255, 254] -> (,) <$> get <*> get
		_ | s2k_useage > 0 ->
			-- s2k_useage is symmetric_type in this case
			(,) <$> localGet get (encode s2k_useage) <*> pure (SimpleS2K MD5)
		_ ->
			return (Unencrypted, S2K 100 B.empty)
	if symmetric_algorithm /= Unencrypted then do {
		encrypted <- getRemainingByteString;
		return (k s2k symmetric_algorithm encrypted False)
	} else do
		skey <- foldM (\m f -> do
			mpi <- get :: Get MPI
			return $ (f,mpi):m) [] (secret_key_fields algorithm)
		chk <- get
		when (checksum (B.concat $ map (encode . snd) skey) /= chk) $
			fail "Checksum verification failed for unencrypted secret key"
		return ((k s2k symmetric_algorithm B.empty False) {key = key ++ skey})
-- PublicKeyPacket, http://tools.ietf.org/html/rfc4880#section-5.5.2
parse_packet  6 = do
	version <- get :: Get Word8
	case version of
		3 -> do
			timestamp <- get
			days <- get
			algorithm <- get
			key <- mapM (\f -> fmap ((,)f) get) (public_key_fields algorithm)
			return PublicKeyPacket {
				version = version,
				timestamp = timestamp,
				key_algorithm = algorithm,
				key = key,
				is_subkey = False,
				v3_days_of_validity = Just days
			}
		4 -> do
			timestamp <- get
			algorithm <- get
			key <- mapM (\f -> fmap ((,)f) get) (public_key_fields algorithm)
			return PublicKeyPacket {
				version = 4,
				timestamp = timestamp,
				key_algorithm = algorithm,
				key = key,
				is_subkey = False,
				v3_days_of_validity = Nothing
			}
		x -> fail $ "Unsupported PublicKeyPacket version " ++ show x ++ "."
-- Secret-SubKey Packet, http://tools.ietf.org/html/rfc4880#section-5.5.1.4
parse_packet  7 = do
	p <- parse_packet 5
	return p {is_subkey = True}
-- CompressedDataPacket, http://tools.ietf.org/html/rfc4880#section-5.6
parse_packet  8 = do
	algorithm <- get
	message <- localGet get =<< (decompress algorithm <$> getRemainingByteString)
	return CompressedDataPacket {
		compression_algorithm = algorithm,
		message = message
	}
-- EncryptedDataPacket, http://tools.ietf.org/html/rfc4880#section-5.7
parse_packet  9 = EncryptedDataPacket 0 <$> getRemainingByteString
-- MarkerPacket, http://tools.ietf.org/html/rfc4880#section-5.8
parse_packet 10 = return MarkerPacket
-- LiteralDataPacket, http://tools.ietf.org/html/rfc4880#section-5.9
parse_packet 11 = do
	format <- get
	filenameLength <- get :: Get Word8
	filename <- getSomeByteString (fromIntegral filenameLength)
	timestamp <- get
	content <- getRemainingByteString
	return LiteralDataPacket {
		format = format,
		filename = B.toString filename,
		timestamp = timestamp,
		content = content
	}
-- TrustPacket, http://tools.ietf.org/html/rfc4880#section-5.10
parse_packet 12 = fmap TrustPacket getRemainingByteString
-- UserIDPacket, http://tools.ietf.org/html/rfc4880#section-5.11
parse_packet 13 =
	fmap (UserIDPacket . B.toString) getRemainingByteString
-- Public-Subkey Packet, http://tools.ietf.org/html/rfc4880#section-5.5.1.2
parse_packet 14 = do
	p <- parse_packet 6
	return p {is_subkey = True}
-- EncryptedDataPacket, http://tools.ietf.org/html/rfc4880#section-5.13
parse_packet 18 = EncryptedDataPacket <$> get <*> getRemainingByteString
-- ModificationDetectionCodePacket, http://tools.ietf.org/html/rfc4880#section-5.14
parse_packet 19 =
	fmap ModificationDetectionCodePacket getRemainingByteString
-- Represent unsupported packets as their tag and literal bytes
parse_packet tag = fmap (UnsupportedPacket tag) getRemainingByteString

-- | Helper method for fingerprints and such
fingerprint_material :: Packet -> [B.ByteString]
fingerprint_material p | version p == 4 =
	[
		B.singleton 0x99,
		encode (6 + fromIntegral (B.length material) :: Word16),
		B.singleton 4, encode (timestamp p), encode (key_algorithm p),
		material
	]
	where
	material = B.concat $ map (encode . (key p !))
		(public_key_fields $ key_algorithm p)
fingerprint_material p | version p `elem` [2, 3] = [n, e]
	where
	n = B.drop 2 (encode (key p ! 'n'))
	e = B.drop 2 (encode (key p ! 'e'))
fingerprint_material _ =
	error "Unsupported Packet version or type in fingerprint_material."

enum_to_word8 :: (Enum a) => a -> Word8
enum_to_word8 = fromIntegral . fromEnum

enum_from_word8 :: (Enum a) => Word8 -> a
enum_from_word8 = toEnum . fromIntegral

data S2K =
	SimpleS2K HashAlgorithm |
	SaltedS2K HashAlgorithm Word64 |
	IteratedSaltedS2K HashAlgorithm Word64 Word32 |
	S2K Word8 B.ByteString
	deriving (Show, Read, Eq)

instance BINARY_CLASS S2K where
	put (SimpleS2K halgo) = put (0::Word8) >> put halgo
	put (SaltedS2K halgo salt) = put (1::Word8) >> put halgo >> put salt
	put (IteratedSaltedS2K halgo salt count) = put (3::Word8) >> put halgo
		>> put salt >> put (encode_s2k_count count)
	put (S2K t body) = put t >> putSomeByteString body

	get = do
		t <- get :: Get Word8
		case t of
			0 -> SimpleS2K <$> get
			1 -> SaltedS2K <$> get <*> get
			3 -> IteratedSaltedS2K <$> get <*> get <*> (decode_s2k_count <$> get)
			_ -> S2K t <$> getRemainingByteString

-- | Take a hash function and an 'S2K' value and generate the bytes
--   needed for creating a symmetric key.
--
-- Return value is always infinite length.
-- Take the first n bytes you need for your keysize.
string2key :: (HashAlgorithm -> LZ.ByteString -> BS.ByteString) -> S2K -> LZ.ByteString -> LZ.ByteString
string2key hsh (SimpleS2K halgo) s = infiniHashes (hsh halgo) s
string2key hsh (SaltedS2K halgo salt) s =
	infiniHashes (hsh halgo) (lazyEncode salt `LZ.append` s)
string2key hsh (IteratedSaltedS2K halgo salt count) s =
	infiniHashes (hsh halgo) $
	LZ.take (max (fromIntegral count) (LZ.length s))
	(LZ.cycle $ lazyEncode salt `LZ.append` s)
string2key _ s2k _ = error $ "Unsupported S2K specifier: " ++ show s2k

infiniHashes :: (LZ.ByteString -> BS.ByteString) -> LZ.ByteString -> LZ.ByteString
infiniHashes hsh s = LZ.fromChunks (hs 0)
	where
	hs c = hsh (LZ.replicate c 0 `LZ.append` s) : hs (c+1)

data HashAlgorithm = MD5 | SHA1 | RIPEMD160 | SHA256 | SHA384 | SHA512 | SHA224 | HashAlgorithm Word8
	deriving (Show, Read, Eq)

instance Enum HashAlgorithm where
	toEnum 01 = MD5
	toEnum 02 = SHA1
	toEnum 03 = RIPEMD160
	toEnum 08 = SHA256
	toEnum 09 = SHA384
	toEnum 10 = SHA512
	toEnum 11 = SHA224
	toEnum x  = HashAlgorithm $ fromIntegral x
	fromEnum MD5       = 01
	fromEnum SHA1      = 02
	fromEnum RIPEMD160 = 03
	fromEnum SHA256    = 08
	fromEnum SHA384    = 09
	fromEnum SHA512    = 10
	fromEnum SHA224    = 11
	fromEnum (HashAlgorithm x) = fromIntegral x

instance BINARY_CLASS HashAlgorithm where
	put = put . enum_to_word8
	get = fmap enum_from_word8 get

data KeyAlgorithm = RSA | RSA_E | RSA_S | ELGAMAL | DSA | ECC | ECDSA | DH | KeyAlgorithm Word8
	deriving (Show, Read, Eq)

instance Enum KeyAlgorithm where
	toEnum 01 = RSA
	toEnum 02 = RSA_E
	toEnum 03 = RSA_S
	toEnum 16 = ELGAMAL
	toEnum 17 = DSA
	toEnum 18 = ECC
	toEnum 19 = ECDSA
	toEnum 21 = DH
	toEnum x  = KeyAlgorithm $ fromIntegral x
	fromEnum RSA     = 01
	fromEnum RSA_E   = 02
	fromEnum RSA_S   = 03
	fromEnum ELGAMAL = 16
	fromEnum DSA     = 17
	fromEnum ECC     = 18
	fromEnum ECDSA   = 19
	fromEnum DH      = 21
	fromEnum (KeyAlgorithm x) = fromIntegral x

instance BINARY_CLASS KeyAlgorithm where
	put = put . enum_to_word8
	get = fmap enum_from_word8 get

data SymmetricAlgorithm = Unencrypted | IDEA | TripleDES | CAST5 | Blowfish | AES128 | AES192 | AES256 | Twofish | SymmetricAlgorithm Word8
	deriving (Show, Read, Eq)

instance Enum SymmetricAlgorithm where
	toEnum 00 = Unencrypted
	toEnum 01 = IDEA
	toEnum 02 = TripleDES
	toEnum 03 = CAST5
	toEnum 04 = Blowfish
	toEnum 07 = AES128
	toEnum 08 = AES192
	toEnum 09 = AES256
	toEnum 10 = Twofish
	toEnum x  = SymmetricAlgorithm $ fromIntegral x
	fromEnum Unencrypted = 00
	fromEnum IDEA        = 01
	fromEnum TripleDES   = 02
	fromEnum CAST5       = 03
	fromEnum Blowfish    = 04
	fromEnum AES128      = 07
	fromEnum AES192      = 08
	fromEnum AES256      = 09
	fromEnum Twofish     = 10
	fromEnum (SymmetricAlgorithm x) = fromIntegral x

instance BINARY_CLASS SymmetricAlgorithm where
	put = put . enum_to_word8
	get = fmap enum_from_word8 get

data CompressionAlgorithm = Uncompressed | ZIP | ZLIB | BZip2 | CompressionAlgorithm Word8
	deriving (Show, Read, Eq)

instance Enum CompressionAlgorithm where
	toEnum 0 = Uncompressed
	toEnum 1 = ZIP
	toEnum 2 = ZLIB
	toEnum 3 = BZip2
	toEnum x = CompressionAlgorithm $ fromIntegral x
	fromEnum Uncompressed = 0
	fromEnum ZIP          = 1
	fromEnum ZLIB         = 2
	fromEnum BZip2        = 3
	fromEnum (CompressionAlgorithm x) = fromIntegral x

instance BINARY_CLASS CompressionAlgorithm where
	put = put . enum_to_word8
	get = fmap enum_from_word8 get

data RevocationCode = NoReason | KeySuperseded | KeyCompromised | KeyRetired | UserIDInvalid | RevocationCode Word8 deriving (Show, Read, Eq)

instance Enum RevocationCode where
	toEnum 00 = NoReason
	toEnum 01 = KeySuperseded
	toEnum 02 = KeyCompromised
	toEnum 03 = KeyRetired
	toEnum 32 = UserIDInvalid
	toEnum  x = RevocationCode $ fromIntegral x
	fromEnum NoReason       = 00
	fromEnum KeySuperseded  = 01
	fromEnum KeyCompromised = 02
	fromEnum KeyRetired     = 03
	fromEnum UserIDInvalid  = 32
	fromEnum (RevocationCode x) = fromIntegral x

instance BINARY_CLASS RevocationCode where
	put = put . enum_to_word8
	get = fmap enum_from_word8 get

-- | A message is encoded as a list that takes the entire file
newtype Message = Message [Packet] deriving (Show, Read, Eq)
instance BINARY_CLASS Message where
	put (Message xs) = mapM_ put xs
	get = fmap Message listUntilEnd

instance Monoid Message where
	mempty = Message []
	mappend (Message a) (Message b) = Message (a ++ b)

-- | Data needed to verify a signature
data SignatureOver =
	DataSignature {literal::Packet, signatures_over::[Packet]} |
	KeySignature {topkey::Packet, signatures_over::[Packet]} |
	SubkeySignature {topkey::Packet, subkey::Packet, signatures_over::[Packet]} |
	CertificationSignature {topkey::Packet, user_id::Packet, signatures_over::[Packet]}
	deriving (Show, Read, Eq)

-- To get the signed-over bytes
instance BINARY_CLASS SignatureOver where
	put (DataSignature (LiteralDataPacket {content = c}) _) =
		putSomeByteString c
	put (KeySignature k _) = mapM_ putSomeByteString (fingerprint_material k)
	put (SubkeySignature k s _) = mapM_ (mapM_ putSomeByteString)
		[fingerprint_material k, fingerprint_material s]
	put (CertificationSignature k (UserIDPacket s) _) =
		mapM_ (mapM_ putSomeByteString) [fingerprint_material k, [
			B.singleton 0xB4,
			encode ((fromIntegral $ B.length bs) :: Word32),
			bs
		]]
		where
		bs = B.fromString s
	put x = fail $ "Malformed signature: " ++ show x
	get = fail "Cannot meaningfully parse bytes to be signed over."

-- | Extract signed objects from a well-formatted message
--
-- Recurses into CompressedDataPacket
--
-- <http://tools.ietf.org/html/rfc4880#section-11>
signatures :: Message -> [SignatureOver]
signatures (Message [CompressedDataPacket _ m]) = signatures m
signatures (Message ps) =
	maybe (paired_sigs Nothing ps) (\p -> [DataSignature p sigs]) (find isDta ps)
	where
	sigs = filter isSignaturePacket ps
	isDta (LiteralDataPacket {}) = True
	isDta _ = False

-- TODO: UserAttribute
paired_sigs :: Maybe Packet -> [Packet] -> [SignatureOver]
paired_sigs _ [] = []
paired_sigs _ (p@(PublicKeyPacket {is_subkey = False}):ps) =
	KeySignature p (takeWhile isSignaturePacket ps) :
	paired_sigs (Just p) (dropWhile isSignaturePacket ps)
paired_sigs _ (p@(SecretKeyPacket {is_subkey = False}):ps) =
	KeySignature p (takeWhile isSignaturePacket ps) :
	paired_sigs (Just p) (dropWhile isSignaturePacket ps)
paired_sigs (Just k) (p@(PublicKeyPacket {is_subkey = True}):ps) =
	SubkeySignature k p (takeWhile isSignaturePacket ps) :
	paired_sigs (Just p) (dropWhile isSignaturePacket ps)
paired_sigs (Just k) (p@(SecretKeyPacket {is_subkey = True}):ps) =
	SubkeySignature k p (takeWhile isSignaturePacket ps) :
	paired_sigs (Just p) (dropWhile isSignaturePacket ps)
paired_sigs (Just k) (p@(UserIDPacket {}):ps) =
	CertificationSignature k p (takeWhile isSignaturePacket ps) :
	paired_sigs (Just k) (dropWhile isSignaturePacket ps)
paired_sigs k (_:ps) = paired_sigs k ps

-- | <http://tools.ietf.org/html/rfc4880#section-3.2>
newtype MPI = MPI Integer deriving (Show, Read, Eq, Ord)
instance BINARY_CLASS MPI where
	put (MPI i)
		| i >= 0 = do
			put (bitl :: Word16)
			putSomeByteString bytes
		| otherwise = fail $ "MPI is less than 0: " ++ show i
		where
		(bytes, bitl)
			| B.null bytes' = (B.singleton 0, 1)
			| otherwise     =
				(bytes', (fromIntegral (B.length bytes') - 1) * 8 + sigBit)

		sigBit = fst $ until ((==0) . snd)
			(first (+1) . second (`shiftR` 1)) (0,B.index bytes 0)
		bytes' = B.reverse $ B.unfoldr (\x ->
				if x == 0 then Nothing else
					Just (fromIntegral x, x `shiftR` 8)
			) i
	get = do
		length <- fmap fromIntegral (get :: Get Word16)
		bytes <- getSomeByteString =<< assertProp (>0) ((length + 7) `div` 8)
		return (MPI (B.foldl (\a b ->
			a `shiftL` 8 .|. fromIntegral b) 0 bytes))

listUntilEnd :: (BINARY_CLASS a) => Get [a]
listUntilEnd = do
	done <- isEmpty
	if done then return [] else do
		next <- get
		rest <- listUntilEnd
		return (next:rest)

-- | <http://tools.ietf.org/html/rfc4880#section-5.2.3.1>
data SignatureSubpacket =
	SignatureCreationTimePacket Word32 |
	SignatureExpirationTimePacket Word32 | -- ^ seconds after CreationTime
	ExportableCertificationPacket Bool |
	TrustSignaturePacket {depth::Word8, trust::Word8} |
	RegularExpressionPacket String |
	RevocablePacket Bool |
	KeyExpirationTimePacket Word32 | -- ^ seconds after key CreationTime
	PreferredSymmetricAlgorithmsPacket [SymmetricAlgorithm] |
	RevocationKeyPacket {
		sensitive::Bool,
		revocation_key_algorithm::KeyAlgorithm,
		revocation_key_fingerprint::String
	} |
	IssuerPacket String |
	NotationDataPacket {
		human_readable::Bool,
		notation_name::String,
		notation_value::String
	} |
	PreferredHashAlgorithmsPacket [HashAlgorithm] |
	PreferredCompressionAlgorithmsPacket [CompressionAlgorithm] |
	KeyServerPreferencesPacket {keyserver_no_modify::Bool} |
	PreferredKeyServerPacket String |
	PrimaryUserIDPacket Bool |
	PolicyURIPacket String |
	KeyFlagsPacket {
		certify_keys::Bool,
		sign_data::Bool,
		encrypt_communication::Bool,
		encrypt_storage::Bool,
		split_key::Bool,
		authentication::Bool,
		group_key::Bool
	} |
	SignerUserIDPacket String |
	ReasonForRevocationPacket RevocationCode String |
	FeaturesPacket {supports_mdc::Bool} |
	SignatureTargetPacket {
		target_key_algorithm::KeyAlgorithm,
		target_hash_algorithm::HashAlgorithm,
		hash::B.ByteString
	} |
	EmbeddedSignaturePacket Packet |
	UnsupportedSignatureSubpacket Word8 B.ByteString
	deriving (Show, Read, Eq)

instance BINARY_CLASS SignatureSubpacket where
	put p = do
		-- Use 5-octet-length + 1 for tag as the first packet body octet
		put (255 :: Word8)
		put (fromIntegral (B.length body) + 1 :: Word32)
		put tag
		putSomeByteString body
		where
		(body, tag) = put_signature_subpacket p
	get = do
		len <- fmap fromIntegral (get :: Get Word8)
		len <- case len of
			_ | len >= 192 && len < 255 -> do -- Two octet length
				second <- fmap fromIntegral (get :: Get Word8)
				return $ ((len - 192) `shiftL` 8) + second + 192
			255 -> -- Five octet length
				fmap fromIntegral (get :: Get Word32)
			_ -> -- One octet length, no furthur processing
				return len
		tag <- fmap stripCrit get :: Get Word8
		-- This forces the whole packet to be consumed
		packet <- getSomeByteString (len-1)
		localGet (parse_signature_subpacket tag) packet
		where
		-- TODO: Decide how to actually encode the "is critical" data
		-- instead of just ignoring it
		stripCrit tag = if tag .&. 0x80 == 0x80 then tag .&. 0x7f else tag

put_signature_subpacket :: SignatureSubpacket -> (B.ByteString, Word8)
put_signature_subpacket (SignatureCreationTimePacket time) =
	(encode time, 2)
put_signature_subpacket (SignatureExpirationTimePacket time) =
	(encode time, 3)
put_signature_subpacket (ExportableCertificationPacket exportable) =
	(encode $ enum_to_word8 exportable, 4)
put_signature_subpacket (TrustSignaturePacket depth trust) =
	(B.concat [encode depth, encode trust], 5)
put_signature_subpacket (RegularExpressionPacket regex) =
	(B.concat [B.fromString regex, B.singleton 0], 6)
put_signature_subpacket (RevocablePacket exportable) =
	(encode $ enum_to_word8 exportable, 7)
put_signature_subpacket (KeyExpirationTimePacket time) =
	(encode time, 9)
put_signature_subpacket (PreferredSymmetricAlgorithmsPacket algos) =
	(B.concat $ map encode algos, 11)
put_signature_subpacket (RevocationKeyPacket sensitive kalgo fpr) =
	(B.concat [encode bitfield, encode kalgo, fprb], 12)
	where
	bitfield = 0x80 .|. (if sensitive then 0x40 else 0x0) :: Word8
	fprb = padBS 20 $ B.drop 2 $ encode (MPI fpri)
	fpri = fst $ head $ readHex fpr
put_signature_subpacket (IssuerPacket keyid) =
	(encode (fst $ head $ readHex $ takeFromEnd 16 keyid :: Word64), 16)
put_signature_subpacket (NotationDataPacket human_readable name value) =
	(B.concat [
		B.pack [flag1,0,0,0],
		encode (fromIntegral (B.length namebs) :: Word16),
		encode (fromIntegral (B.length valuebs) :: Word16),
		namebs,
		valuebs
	], 20)
	where
	valuebs = B.fromString value
	namebs = B.fromString name
	flag1 = if human_readable then 0x80 else 0x0
put_signature_subpacket (PreferredHashAlgorithmsPacket algos) =
	(B.concat $ map encode algos, 21)
put_signature_subpacket (PreferredCompressionAlgorithmsPacket algos) =
	(B.concat $ map encode algos, 22)
put_signature_subpacket (KeyServerPreferencesPacket no_modify) =
	(B.singleton (if no_modify then 0x80 else 0x0), 23)
put_signature_subpacket (PreferredKeyServerPacket uri) =
	(B.fromString uri, 24)
put_signature_subpacket (PrimaryUserIDPacket isprimary) =
	(encode $ enum_to_word8 isprimary, 25)
put_signature_subpacket (PolicyURIPacket uri) =
	(B.fromString uri, 26)
put_signature_subpacket (KeyFlagsPacket certify sign encryptC encryptS split auth group) =
	(B.singleton $
		flag 0x01 certify  .|.
		flag 0x02 sign     .|.
		flag 0x04 encryptC .|.
		flag 0x08 encryptS .|.
		flag 0x10 split    .|.
		flag 0x20 auth     .|.
		flag 0x80 group
	, 27)
	where
	flag x True = x
	flag _ False = 0x0
put_signature_subpacket (SignerUserIDPacket userid) =
	(B.fromString userid, 28)
put_signature_subpacket (ReasonForRevocationPacket code string) =
	(B.concat [encode code, B.fromString string], 29)
put_signature_subpacket (FeaturesPacket supports_mdc) =
	(B.singleton $ if supports_mdc then 0x01 else 0x00, 30)
put_signature_subpacket (SignatureTargetPacket kalgo halgo hash) =
	(B.concat [encode kalgo, encode halgo, hash], 31)
put_signature_subpacket (EmbeddedSignaturePacket packet)
	| isSignaturePacket packet = (fst $ put_packet packet, 32)
	| otherwise = error $ "Tried to put non-SignaturePacket in EmbeddedSignaturePacket: " ++ show packet
put_signature_subpacket (UnsupportedSignatureSubpacket tag bytes) =
	(bytes, tag)

parse_signature_subpacket :: Word8 -> Get SignatureSubpacket
-- SignatureCreationTimePacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.4
parse_signature_subpacket  2 = fmap SignatureCreationTimePacket get
-- SignatureExpirationTimePacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.10
parse_signature_subpacket  3 = fmap SignatureExpirationTimePacket get
-- ExportableCertificationPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.11
parse_signature_subpacket  4 =
	fmap (ExportableCertificationPacket . enum_from_word8) get
-- TrustSignaturePacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.13
parse_signature_subpacket  5 = liftM2 TrustSignaturePacket get get
-- TrustSignaturePacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.14
parse_signature_subpacket  6 = fmap
	(RegularExpressionPacket . B.toString . B.init) getRemainingByteString
-- RevocablePacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.12
parse_signature_subpacket  7 =
	fmap (RevocablePacket . enum_from_word8) get
-- KeyExpirationTimePacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.6
parse_signature_subpacket  9 = fmap KeyExpirationTimePacket get
-- PreferredSymmetricAlgorithms, http://tools.ietf.org/html/rfc4880#section-5.2.3.7
parse_signature_subpacket 11 =
	fmap PreferredSymmetricAlgorithmsPacket listUntilEnd
-- RevocationKeyPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.15
parse_signature_subpacket 12 = do
	bitfield <- get :: Get Word8
	kalgo <- get
	fpr <- getSomeByteString 20
	-- bitfield must have bit 0x80 set, says the spec
	return RevocationKeyPacket {
		sensitive = bitfield .&. 0x40 == 0x40,
		revocation_key_algorithm = kalgo,
		revocation_key_fingerprint =
			pad 40 $ map toUpper $ foldr (padB `oo` showHex) "" (B.unpack fpr)
	}
	where
	oo = (.) . (.)
	padB s | odd $ length s = '0':s
	       | otherwise = s
-- IssuerPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.5
parse_signature_subpacket 16 = do
	keyid <- get :: Get Word64
	return $ IssuerPacket (pad 16 $ map toUpper $ showHex keyid "")
-- NotationDataPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.16
parse_signature_subpacket 20 = do
	(flag1,_,_,_) <- get4word8
	(m,n) <- liftM2 (,) get get :: Get (Word16,Word16)
	name <- fmap B.toString $ getSomeByteString $ fromIntegral m
	value <- fmap B.toString $ getSomeByteString $ fromIntegral n
	return NotationDataPacket {
		human_readable = flag1 .&. 0x80 == 0x80,
		notation_name = name,
		notation_value = value
	}
	where
	get4word8 :: Get (Word8,Word8,Word8,Word8)
	get4word8 = liftM4 (,,,) get get get get
-- PreferredHashAlgorithmsPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.8
parse_signature_subpacket 21 =
	fmap PreferredHashAlgorithmsPacket listUntilEnd
-- PreferredCompressionAlgorithmsPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.9
parse_signature_subpacket 22 =
	fmap PreferredCompressionAlgorithmsPacket listUntilEnd
-- KeyServerPreferencesPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.17
parse_signature_subpacket 23 = do
	empty <- isEmpty
	flag1 <- if empty then return 0 else get :: Get Word8
	return KeyServerPreferencesPacket {
		keyserver_no_modify = flag1 .&. 0x80 == 0x80
	}
-- PreferredKeyServerPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.18
parse_signature_subpacket 24 =
	fmap (PreferredKeyServerPacket . B.toString) getRemainingByteString
-- PrimaryUserIDPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.19
parse_signature_subpacket 25 =
	fmap (PrimaryUserIDPacket . enum_from_word8) get
-- PolicyURIPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.20
parse_signature_subpacket 26 =
	fmap (PolicyURIPacket . B.toString) getRemainingByteString
-- KeyFlagsPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.21
parse_signature_subpacket 27 = do
	empty <- isEmpty
	flag1 <- if empty then return 0 else get :: Get Word8
	return KeyFlagsPacket {
		certify_keys          = flag1 .&. 0x01 == 0x01,
		sign_data             = flag1 .&. 0x02 == 0x02,
		encrypt_communication = flag1 .&. 0x04 == 0x04,
		encrypt_storage       = flag1 .&. 0x08 == 0x08,
		split_key             = flag1 .&. 0x10 == 0x10,
		authentication        = flag1 .&. 0x20 == 0x20,
		group_key             = flag1 .&. 0x80 == 0x80
	}
-- SignerUserIDPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.22
parse_signature_subpacket 28 =
	fmap (SignerUserIDPacket . B.toString) getRemainingByteString
-- ReasonForRevocationPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.23
parse_signature_subpacket 29 = liftM2 ReasonForRevocationPacket get
	(fmap B.toString getRemainingByteString)
-- FeaturesPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.24
parse_signature_subpacket 30 = do
	empty <- isEmpty
	flag1 <- if empty then return 0 else get :: Get Word8
	return FeaturesPacket {
		supports_mdc = flag1 .&. 0x01 == 0x01
	}
-- SignatureTargetPacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.25
parse_signature_subpacket 31 =
	liftM3 SignatureTargetPacket get get getRemainingByteString
-- EmbeddedSignaturePacket, http://tools.ietf.org/html/rfc4880#section-5.2.3.26
parse_signature_subpacket 32 =
	fmap EmbeddedSignaturePacket (parse_packet 2)
-- Represent unsupported packets as their tag and literal bytes
parse_signature_subpacket tag =
	fmap (UnsupportedSignatureSubpacket tag) getRemainingByteString

-- | Find the keyid that issued a SignaturePacket
signature_issuer :: Packet -> Maybe String
signature_issuer (SignaturePacket {hashed_subpackets = hashed,
                                   unhashed_subpackets = unhashed}) =
	case issuers of
		IssuerPacket issuer : _ -> Just issuer
		_                       -> Nothing
	where
	issuers = filter isIssuer hashed ++ filter isIssuer unhashed
	isIssuer (IssuerPacket {}) = True
	isIssuer _ = False
signature_issuer _ = Nothing

-- | Find a key with the given Fingerprint/KeyID
find_key ::
	(Packet -> String) -- ^ Extract Fingerprint/KeyID from packet
	-> Message         -- ^ List of packets (some of which are keys)
	-> String          -- ^ Fingerprint/KeyID to search for
	-> Maybe Packet
find_key fpr (Message (x@(PublicKeyPacket {}):xs)) keyid =
	find_key' fpr x xs keyid
find_key fpr (Message (x@(SecretKeyPacket {}):xs)) keyid =
	find_key' fpr x xs keyid
find_key fpr (Message (_:xs)) keyid =
	find_key fpr (Message xs) keyid
find_key _ _ _ = Nothing

find_key' :: (Packet -> String) -> Packet -> [Packet] -> String -> Maybe Packet
find_key' fpr x xs keyid
	| thisid == keyid = Just x
	| otherwise = find_key fpr (Message xs) keyid
	where
	thisid = takeFromEnd (length keyid) (fpr x)

takeFromEnd :: Int -> String -> String
takeFromEnd l = reverse . take l . reverse

-- | SignaturePacket smart constructor
--
--   <http://tools.ietf.org/html/rfc4880#section-5.2>
signaturePacket ::
	Word8    -- ^ Signature version (probably 4)
	-> Word8 -- ^ Signature type <http://tools.ietf.org/html/rfc4880#section-5.2.1>
	-> KeyAlgorithm
	-> HashAlgorithm
	-> [SignatureSubpacket] -- ^ Hashed subpackets (these get signed)
	-> [SignatureSubpacket] -- ^ Unhashed subpackets (these do not get signed)
	-> Word16 -- ^ Left 16 bits of the signed hash value
	-> [MPI] -- ^ The raw MPIs of the signature
	-> Packet
signaturePacket version signature_type key_algorithm hash_algorithm hashed_subpackets unhashed_subpackets hash_head signature =
	let p = SignaturePacket {
		version = version,
		signature_type = signature_type,
		key_algorithm = key_algorithm,
		hash_algorithm = hash_algorithm,
		hashed_subpackets = hashed_subpackets,
		unhashed_subpackets = unhashed_subpackets,
		hash_head = hash_head,
		signature = signature,
		trailer = undefined
	} in p { trailer = calculate_signature_trailer p }

isSignaturePacket :: Packet -> Bool
isSignaturePacket (SignaturePacket {})  = True
isSignaturePacket _                     = False