pandora-0.3.2: A box of patterns and paradigms

 Bivariant (Constant :: Type -> Type -> Type) Source # Instance details Methods(<->) :: (a -> b) -> (c -> d) -> Constant a c -> Constant b d Source #bimap :: (a -> b) -> (c -> d) -> Constant a c -> Constant b d Source # Contravariant (Constant a :: Type -> Type) Source # Instance details Methods(>$<) :: (a0 -> b) -> Constant a b -> Constant a a0 Source #contramap :: (a0 -> b) -> Constant a b -> Constant a a0 Source #(>$) :: b -> Constant a b -> Constant a a0 Source #($<) :: Constant a b -> b -> Constant a a0 Source #full :: Constant a () -> Constant a a0 Source #(>&<) :: Constant a b -> (a0 -> b) -> Constant a a0 Source #(>$$<) :: Contravariant u => (a0 -> b) -> ((Constant a :. u) := a0) -> (Constant a :. u) := b Source #(>$$$<) :: (Contravariant u, Contravariant v) => (a0 -> b) -> ((Constant a :. (u :. v)) := b) -> (Constant a :. (u :. v)) := a0 Source #(><) :: (Contravariant u, Contravariant v, Contravariant w) => (a0 -> b) -> ((Constant a :. (u :. (v :. w))) := a0) -> (Constant a :. (u :. (v :. w))) := b Source #(>&&<) :: Contravariant u => ((Constant a :. u) := a0) -> (a0 -> b) -> (Constant a :. u) := b Source #(>&&&<) :: (Contravariant u, Contravariant v) => ((Constant a :. (u :. v)) := b) -> (a0 -> b) -> (Constant a :. (u :. v)) := a0 Source #(>&&&&<) :: (Contravariant u, Contravariant v, Contravariant w) => ((Constant a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Constant a :. (u :. (v :. w))) := b Source # Covariant (Constant a :: Type -> Type) Source # Instance details Methods(<$>) :: (a0 -> b) -> Constant a a0 -> Constant a b Source #comap :: (a0 -> b) -> Constant a a0 -> Constant a b Source #(<$) :: a0 -> Constant a b -> Constant a a0 Source #($>) :: Constant a a0 -> b -> Constant a b Source #void :: Constant a a0 -> Constant a () Source #loeb :: Constant a (a0 <-| Constant a) -> Constant a a0 Source #(<&>) :: Constant a a0 -> (a0 -> b) -> Constant a b Source #(<$$>) :: Covariant u => (a0 -> b) -> ((Constant a :. u) := a0) -> (Constant a :. u) := b Source #(<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> ((Constant a :. (u :. v)) := a0) -> (Constant a :. (u :. v)) := b Source #(<>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> ((Constant a :. (u :. (v :. w))) := a0) -> (Constant a :. (u :. (v :. w))) := b Source #(<&&>) :: Covariant u => ((Constant a :. u) := a0) -> (a0 -> b) -> (Constant a :. u) := b Source #(<&&&>) :: (Covariant u, Covariant v) => ((Constant a :. (u :. v)) := a0) -> (a0 -> b) -> (Constant a :. (u :. v)) := b Source #(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Constant a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Constant a :. (u :. (v :. w))) := b Source # Invariant (Constant a :: Type -> Type) Source # Instance details Methodsinvmap :: (a0 -> b) -> (b -> a0) -> Constant a a0 -> Constant a b Source # Traversable (Constant a :: Type -> Type) Source # Instance details Methods(->>) :: (Pointable u, Applicative u) => Constant a a0 -> (a0 -> u b) -> (u :. Constant a) := b Source #traverse :: (Pointable u, Applicative u) => (a0 -> u b) -> Constant a a0 -> (u :. Constant a) := b Source #sequence :: (Pointable u, Applicative u) => ((Constant a :. u) := a0) -> (u :. Constant a) := a0 Source #(->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Constant a) := a0) -> (a0 -> u b) -> (u :. (v :. Constant a)) := b Source #(->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Constant a)) := a0) -> (a0 -> u b) -> (u :. (w :. (v :. Constant a))) := b Source #(->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Constant a))) := a0) -> (a0 -> u b) -> (u :. (j :. (w :. (v :. Constant a)))) := b Source # Semigroup a => Semigroup (Constant a b) Source # Instance details Methods(+) :: Constant a b -> Constant a b -> Constant a b Source # Ringoid a => Ringoid (Constant a b) Source # Instance details Methods(*) :: Constant a b -> Constant a b -> Constant a b Source # Monoid a => Monoid (Constant a b) Source # Instance details Methodszero :: Constant a b Source # Quasiring a => Quasiring (Constant a b) Source # Instance details Methodsone :: Constant a b Source # Group a => Group (Constant a b) Source # Instance details Methodsinvert :: Constant a b -> Constant a b Source # Supremum a => Supremum (Constant a b) Source # Instance details Methods(\/) :: Constant a b -> Constant a b -> Constant a b Source # Infimum a => Infimum (Constant a b) Source # Instance details Methods(/\) :: Constant a b -> Constant a b -> Constant a b Source # Lattice a => Lattice (Constant a b) Source # Instance details Setoid a => Setoid (Constant a b) Source # Instance details Methods(==) :: Constant a b -> Constant a b -> Boolean Source #(/=) :: Constant a b -> Constant a b -> Boolean Source # Chain a => Chain (Constant a b) Source # Instance details Methods(<=>) :: Constant a b -> Constant a b -> Ordering Source #(<) :: Constant a b -> Constant a b -> Boolean Source #(<=) :: Constant a b -> Constant a b -> Boolean Source #(>) :: Constant a b -> Constant a b -> Boolean Source #(>=) :: Constant a b -> Constant a b -> Boolean Source #