papa-base-export-0.3.1: Prelude with only useful functions

Safe HaskellSafe
LanguageHaskell2010

Papa.Base.Export.Data.Semigroup

Synopsis

Documentation

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Since: 4.9.0.0

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

(a <> b) <> c = a <> (b <> c)

If a is also a Monoid we further require

(<>) = mappend

sconcat :: NonEmpty a -> a #

Reduce a non-empty list with <>

The default definition should be sufficient, but this can be overridden for efficiency.

stimes :: Integral b => b -> a -> a #

Repeat a value n times.

Given that this works on a Semigroup it is allowed to fail if you request 0 or fewer repetitions, and the default definition will do so.

By making this a member of the class, idempotent semigroups and monoids can upgrade this to execute in O(1) by picking stimes = stimesIdempotent or stimes = stimesIdempotentMonoid respectively.

Instances

Semigroup Ordering 
Semigroup () 

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup Void 

Methods

(<>) :: Void -> Void -> Void #

sconcat :: NonEmpty Void -> Void #

stimes :: Integral b => b -> Void -> Void #

Semigroup All 

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Semigroup Any 

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Semigroup [a] 

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

Semigroup a => Semigroup (Maybe a) 

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Ord a => Semigroup (Min a) 

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Ord a => Semigroup (Max a) 

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Semigroup (First a) 

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a) 

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Monoid m => Semigroup (WrappedMonoid m) 
Semigroup a => Semigroup (Option a) 

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Semigroup (NonEmpty a) 

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Semigroup a => Semigroup (Dual a) 

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Semigroup (Endo a) 

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Num a => Semigroup (Sum a) 

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Semigroup (Product a) 

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Semigroup (First a) 

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a) 

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup b => Semigroup (a -> b) 

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b => b -> (a -> b) -> a -> b #

Semigroup (Either a b) 

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b => b -> Either a b -> Either a b #

(Semigroup a, Semigroup b) => Semigroup (a, b) 

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b => b -> (a, b) -> (a, b) #

Semigroup (Proxy k s) 

Methods

(<>) :: Proxy k s -> Proxy k s -> Proxy k s #

sconcat :: NonEmpty (Proxy k s) -> Proxy k s #

stimes :: Integral b => b -> Proxy k s -> Proxy k s #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) 

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b => b -> (a, b, c) -> (a, b, c) #

Semigroup a => Semigroup (Const k a b) 

Methods

(<>) :: Const k a b -> Const k a b -> Const k a b #

sconcat :: NonEmpty (Const k a b) -> Const k a b #

stimes :: Integral b => b -> Const k a b -> Const k a b #

Alternative f => Semigroup (Alt * f a) 

Methods

(<>) :: Alt * f a -> Alt * f a -> Alt * f a #

sconcat :: NonEmpty (Alt * f a) -> Alt * f a #

stimes :: Integral b => b -> Alt * f a -> Alt * f a #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) 

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b => b -> (a, b, c, d) -> (a, b, c, d) #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) 

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b => b -> (a, b, c, d, e) -> (a, b, c, d, e) #

stimesMonoid :: (Integral b, Monoid a) => b -> a -> a #

This is a valid definition of stimes for a Monoid.

Unlike the default definition of stimes, it is defined for 0 and so it should be preferred where possible.

stimesIdempotent :: Integral b => b -> a -> a #

This is a valid definition of stimes for an idempotent Semigroup.

When x <> x = x, this definition should be preferred, because it works in O(1) rather than O(log n).

stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a #

This is a valid definition of stimes for an idempotent Monoid.

When mappend x x = x, this definition should be preferred, because it works in O(1) rather than O(log n)

mtimesDefault :: (Integral b, Monoid a) => b -> a -> a #

Repeat a value n times.

mtimesDefault n a = a <> a <> ... <> a  -- using <> (n-1) times

Implemented using stimes and mempty.

This is a suitable definition for an mtimes member of Monoid.

data Min a :: * -> * #

Instances

Monad Min 

Methods

(>>=) :: Min a -> (a -> Min b) -> Min b #

(>>) :: Min a -> Min b -> Min b #

return :: a -> Min a #

fail :: String -> Min a #

Functor Min 

Methods

fmap :: (a -> b) -> Min a -> Min b #

(<$) :: a -> Min b -> Min a #

MonadFix Min 

Methods

mfix :: (a -> Min a) -> Min a #

Applicative Min 

Methods

pure :: a -> Min a #

(<*>) :: Min (a -> b) -> Min a -> Min b #

(*>) :: Min a -> Min b -> Min b #

(<*) :: Min a -> Min b -> Min a #

Foldable Min 

Methods

fold :: Monoid m => Min m -> m #

foldMap :: Monoid m => (a -> m) -> Min a -> m #

foldr :: (a -> b -> b) -> b -> Min a -> b #

foldr' :: (a -> b -> b) -> b -> Min a -> b #

foldl :: (b -> a -> b) -> b -> Min a -> b #

foldl' :: (b -> a -> b) -> b -> Min a -> b #

foldr1 :: (a -> a -> a) -> Min a -> a #

foldl1 :: (a -> a -> a) -> Min a -> a #

toList :: Min a -> [a] #

null :: Min a -> Bool #

length :: Min a -> Int #

elem :: Eq a => a -> Min a -> Bool #

maximum :: Ord a => Min a -> a #

minimum :: Ord a => Min a -> a #

sum :: Num a => Min a -> a #

product :: Num a => Min a -> a #

Traversable Min 

Methods

traverse :: Applicative f => (a -> f b) -> Min a -> f (Min b) #

sequenceA :: Applicative f => Min (f a) -> f (Min a) #

mapM :: Monad m => (a -> m b) -> Min a -> m (Min b) #

sequence :: Monad m => Min (m a) -> m (Min a) #

Generic1 Min 

Associated Types

type Rep1 (Min :: * -> *) :: * -> * #

Methods

from1 :: Min a -> Rep1 Min a #

to1 :: Rep1 Min a -> Min a #

Bounded a => Bounded (Min a) 

Methods

minBound :: Min a #

maxBound :: Min a #

Enum a => Enum (Min a) 

Methods

succ :: Min a -> Min a #

pred :: Min a -> Min a #

toEnum :: Int -> Min a #

fromEnum :: Min a -> Int #

enumFrom :: Min a -> [Min a] #

enumFromThen :: Min a -> Min a -> [Min a] #

enumFromTo :: Min a -> Min a -> [Min a] #

enumFromThenTo :: Min a -> Min a -> Min a -> [Min a] #

Eq a => Eq (Min a) 

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Data a => Data (Min a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) #

toConstr :: Min a -> Constr #

dataTypeOf :: Min a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) #

gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) #

Num a => Num (Min a) 

Methods

(+) :: Min a -> Min a -> Min a #

(-) :: Min a -> Min a -> Min a #

(*) :: Min a -> Min a -> Min a #

negate :: Min a -> Min a #

abs :: Min a -> Min a #

signum :: Min a -> Min a #

fromInteger :: Integer -> Min a #

Ord a => Ord (Min a) 

Methods

compare :: Min a -> Min a -> Ordering #

(<) :: Min a -> Min a -> Bool #

(<=) :: Min a -> Min a -> Bool #

(>) :: Min a -> Min a -> Bool #

(>=) :: Min a -> Min a -> Bool #

max :: Min a -> Min a -> Min a #

min :: Min a -> Min a -> Min a #

Read a => Read (Min a) 
Show a => Show (Min a) 

Methods

showsPrec :: Int -> Min a -> ShowS #

show :: Min a -> String #

showList :: [Min a] -> ShowS #

Generic (Min a) 

Associated Types

type Rep (Min a) :: * -> * #

Methods

from :: Min a -> Rep (Min a) x #

to :: Rep (Min a) x -> Min a #

Ord a => Semigroup (Min a) 

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

(Ord a, Bounded a) => Monoid (Min a) 

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

type Rep1 Min 
type Rep1 Min = D1 (MetaData "Min" "Data.Semigroup" "base" True) (C1 (MetaCons "Min" PrefixI True) (S1 (MetaSel (Just Symbol "getMin") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (Min a) 
type Rep (Min a) = D1 (MetaData "Min" "Data.Semigroup" "base" True) (C1 (MetaCons "Min" PrefixI True) (S1 (MetaSel (Just Symbol "getMin") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

data Max a :: * -> * #

Instances

Monad Max 

Methods

(>>=) :: Max a -> (a -> Max b) -> Max b #

(>>) :: Max a -> Max b -> Max b #

return :: a -> Max a #

fail :: String -> Max a #

Functor Max 

Methods

fmap :: (a -> b) -> Max a -> Max b #

(<$) :: a -> Max b -> Max a #

MonadFix Max 

Methods

mfix :: (a -> Max a) -> Max a #

Applicative Max 

Methods

pure :: a -> Max a #

(<*>) :: Max (a -> b) -> Max a -> Max b #

(*>) :: Max a -> Max b -> Max b #

(<*) :: Max a -> Max b -> Max a #

Foldable Max 

Methods

fold :: Monoid m => Max m -> m #

foldMap :: Monoid m => (a -> m) -> Max a -> m #

foldr :: (a -> b -> b) -> b -> Max a -> b #

foldr' :: (a -> b -> b) -> b -> Max a -> b #

foldl :: (b -> a -> b) -> b -> Max a -> b #

foldl' :: (b -> a -> b) -> b -> Max a -> b #

foldr1 :: (a -> a -> a) -> Max a -> a #

foldl1 :: (a -> a -> a) -> Max a -> a #

toList :: Max a -> [a] #

null :: Max a -> Bool #

length :: Max a -> Int #

elem :: Eq a => a -> Max a -> Bool #

maximum :: Ord a => Max a -> a #

minimum :: Ord a => Max a -> a #

sum :: Num a => Max a -> a #

product :: Num a => Max a -> a #

Traversable Max 

Methods

traverse :: Applicative f => (a -> f b) -> Max a -> f (Max b) #

sequenceA :: Applicative f => Max (f a) -> f (Max a) #

mapM :: Monad m => (a -> m b) -> Max a -> m (Max b) #

sequence :: Monad m => Max (m a) -> m (Max a) #

Generic1 Max 

Associated Types

type Rep1 (Max :: * -> *) :: * -> * #

Methods

from1 :: Max a -> Rep1 Max a #

to1 :: Rep1 Max a -> Max a #

Bounded a => Bounded (Max a) 

Methods

minBound :: Max a #

maxBound :: Max a #

Enum a => Enum (Max a) 

Methods

succ :: Max a -> Max a #

pred :: Max a -> Max a #

toEnum :: Int -> Max a #

fromEnum :: Max a -> Int #

enumFrom :: Max a -> [Max a] #

enumFromThen :: Max a -> Max a -> [Max a] #

enumFromTo :: Max a -> Max a -> [Max a] #

enumFromThenTo :: Max a -> Max a -> Max a -> [Max a] #

Eq a => Eq (Max a) 

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Data a => Data (Max a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) #

toConstr :: Max a -> Constr #

dataTypeOf :: Max a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) #

gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) #

Num a => Num (Max a) 

Methods

(+) :: Max a -> Max a -> Max a #

(-) :: Max a -> Max a -> Max a #

(*) :: Max a -> Max a -> Max a #

negate :: Max a -> Max a #

abs :: Max a -> Max a #

signum :: Max a -> Max a #

fromInteger :: Integer -> Max a #

Ord a => Ord (Max a) 

Methods

compare :: Max a -> Max a -> Ordering #

(<) :: Max a -> Max a -> Bool #

(<=) :: Max a -> Max a -> Bool #

(>) :: Max a -> Max a -> Bool #

(>=) :: Max a -> Max a -> Bool #

max :: Max a -> Max a -> Max a #

min :: Max a -> Max a -> Max a #

Read a => Read (Max a) 
Show a => Show (Max a) 

Methods

showsPrec :: Int -> Max a -> ShowS #

show :: Max a -> String #

showList :: [Max a] -> ShowS #

Generic (Max a) 

Associated Types

type Rep (Max a) :: * -> * #

Methods

from :: Max a -> Rep (Max a) x #

to :: Rep (Max a) x -> Max a #

Ord a => Semigroup (Max a) 

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

(Ord a, Bounded a) => Monoid (Max a) 

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

type Rep1 Max 
type Rep1 Max = D1 (MetaData "Max" "Data.Semigroup" "base" True) (C1 (MetaCons "Max" PrefixI True) (S1 (MetaSel (Just Symbol "getMax") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (Max a) 
type Rep (Max a) = D1 (MetaData "Max" "Data.Semigroup" "base" True) (C1 (MetaCons "Max" PrefixI True) (S1 (MetaSel (Just Symbol "getMax") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

data First a :: * -> * #

Use Option (First a) to get the behavior of First from Data.Monoid.

Instances

Monad First 

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Functor First 

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

MonadFix First 

Methods

mfix :: (a -> First a) -> First a #

Applicative First 

Methods

pure :: a -> First a #

(<*>) :: First (a -> b) -> First a -> First b #

(*>) :: First a -> First b -> First b #

(<*) :: First a -> First b -> First a #

Foldable First 

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Traversable First 

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Generic1 First 

Associated Types

type Rep1 (First :: * -> *) :: * -> * #

Methods

from1 :: First a -> Rep1 First a #

to1 :: Rep1 First a -> First a #

Bounded a => Bounded (First a) 

Methods

minBound :: First a #

maxBound :: First a #

Enum a => Enum (First a) 

Methods

succ :: First a -> First a #

pred :: First a -> First a #

toEnum :: Int -> First a #

fromEnum :: First a -> Int #

enumFrom :: First a -> [First a] #

enumFromThen :: First a -> First a -> [First a] #

enumFromTo :: First a -> First a -> [First a] #

enumFromThenTo :: First a -> First a -> First a -> [First a] #

Eq a => Eq (First a) 

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Data a => Data (First a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) #

toConstr :: First a -> Constr #

dataTypeOf :: First a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) #

gmapT :: (forall b. Data b => b -> b) -> First a -> First a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r #

gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) #

Ord a => Ord (First a) 

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Read a => Read (First a) 
Show a => Show (First a) 

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Generic (First a) 

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Semigroup (First a) 

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

type Rep1 First 
type Rep1 First = D1 (MetaData "First" "Data.Semigroup" "base" True) (C1 (MetaCons "First" PrefixI True) (S1 (MetaSel (Just Symbol "getFirst") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (First a) 
type Rep (First a) = D1 (MetaData "First" "Data.Semigroup" "base" True) (C1 (MetaCons "First" PrefixI True) (S1 (MetaSel (Just Symbol "getFirst") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

data Last a :: * -> * #

Use Option (Last a) to get the behavior of Last from Data.Monoid

Instances

Monad Last 

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Functor Last 

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

MonadFix Last 

Methods

mfix :: (a -> Last a) -> Last a #

Applicative Last 

Methods

pure :: a -> Last a #

(<*>) :: Last (a -> b) -> Last a -> Last b #

(*>) :: Last a -> Last b -> Last b #

(<*) :: Last a -> Last b -> Last a #

Foldable Last 

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Traversable Last 

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Generic1 Last 

Associated Types

type Rep1 (Last :: * -> *) :: * -> * #

Methods

from1 :: Last a -> Rep1 Last a #

to1 :: Rep1 Last a -> Last a #

Bounded a => Bounded (Last a) 

Methods

minBound :: Last a #

maxBound :: Last a #

Enum a => Enum (Last a) 

Methods

succ :: Last a -> Last a #

pred :: Last a -> Last a #

toEnum :: Int -> Last a #

fromEnum :: Last a -> Int #

enumFrom :: Last a -> [Last a] #

enumFromThen :: Last a -> Last a -> [Last a] #

enumFromTo :: Last a -> Last a -> [Last a] #

enumFromThenTo :: Last a -> Last a -> Last a -> [Last a] #

Eq a => Eq (Last a) 

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Data a => Data (Last a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) #

toConstr :: Last a -> Constr #

dataTypeOf :: Last a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) #

gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) #

Ord a => Ord (Last a) 

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

Read a => Read (Last a) 
Show a => Show (Last a) 

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Generic (Last a) 

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Semigroup (Last a) 

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

type Rep1 Last 
type Rep1 Last = D1 (MetaData "Last" "Data.Semigroup" "base" True) (C1 (MetaCons "Last" PrefixI True) (S1 (MetaSel (Just Symbol "getLast") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (Last a) 
type Rep (Last a) = D1 (MetaData "Last" "Data.Semigroup" "base" True) (C1 (MetaCons "Last" PrefixI True) (S1 (MetaSel (Just Symbol "getLast") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

data WrappedMonoid m :: * -> * #

Provide a Semigroup for an arbitrary Monoid.

Instances

Generic1 WrappedMonoid 

Associated Types

type Rep1 (WrappedMonoid :: * -> *) :: * -> * #

Bounded a => Bounded (WrappedMonoid a) 
Enum a => Enum (WrappedMonoid a) 
Eq m => Eq (WrappedMonoid m) 
Data m => Data (WrappedMonoid m) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) #

toConstr :: WrappedMonoid m -> Constr #

dataTypeOf :: WrappedMonoid m -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) #

gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

Ord m => Ord (WrappedMonoid m) 
Read m => Read (WrappedMonoid m) 
Show m => Show (WrappedMonoid m) 
Generic (WrappedMonoid m) 

Associated Types

type Rep (WrappedMonoid m) :: * -> * #

Monoid m => Semigroup (WrappedMonoid m) 
Monoid m => Monoid (WrappedMonoid m) 
type Rep1 WrappedMonoid 
type Rep1 WrappedMonoid = D1 (MetaData "WrappedMonoid" "Data.Semigroup" "base" True) (C1 (MetaCons "WrapMonoid" PrefixI True) (S1 (MetaSel (Just Symbol "unwrapMonoid") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (WrappedMonoid m) 
type Rep (WrappedMonoid m) = D1 (MetaData "WrappedMonoid" "Data.Semigroup" "base" True) (C1 (MetaCons "WrapMonoid" PrefixI True) (S1 (MetaSel (Just Symbol "unwrapMonoid") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 m)))

class Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

  • mappend mempty x = x
  • mappend x mempty = x
  • mappend x (mappend y z) = mappend (mappend x y) z
  • mconcat = foldr mappend mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

Minimal complete definition

mempty, mappend

Methods

mempty :: a #

Identity of mappend

mappend :: a -> a -> a #

An associative operation

Instances

Monoid Ordering 
Monoid () 

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid All 

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Any 

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid [a] 

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there is no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (IO a) 

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

Ord a => Monoid (Max a) 

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Ord a => Monoid (Min a) 

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

(Ord a, Bounded a) => Monoid (Min a) 

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

(Ord a, Bounded a) => Monoid (Max a) 

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Monoid m => Monoid (WrappedMonoid m) 
Semigroup a => Monoid (Option a) 

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

Monoid a => Monoid (Dual a) 

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Endo a) 

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Num a => Monoid (Sum a) 

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Num a => Monoid (Product a) 

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Monoid (First a) 

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a) 

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Monoid b => Monoid (a -> b) 

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

(Monoid a, Monoid b) => Monoid (a, b) 

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid (Proxy k s) 

Methods

mempty :: Proxy k s #

mappend :: Proxy k s -> Proxy k s -> Proxy k s #

mconcat :: [Proxy k s] -> Proxy k s #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) 

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

Monoid a => Monoid (Const k a b) 

Methods

mempty :: Const k a b #

mappend :: Const k a b -> Const k a b -> Const k a b #

mconcat :: [Const k a b] -> Const k a b #

Alternative f => Monoid (Alt * f a) 

Methods

mempty :: Alt * f a #

mappend :: Alt * f a -> Alt * f a -> Alt * f a #

mconcat :: [Alt * f a] -> Alt * f a #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) 

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) 

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

data Dual a :: * -> * #

The dual of a Monoid, obtained by swapping the arguments of mappend.

Instances

Monad Dual 

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

fail :: String -> Dual a #

Functor Dual 

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Applicative Dual 

Methods

pure :: a -> Dual a #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b #

(*>) :: Dual a -> Dual b -> Dual b #

(<*) :: Dual a -> Dual b -> Dual a #

Foldable Dual 

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Traversable Dual 

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Generic1 Dual 

Associated Types

type Rep1 (Dual :: * -> *) :: * -> * #

Methods

from1 :: Dual a -> Rep1 Dual a #

to1 :: Rep1 Dual a -> Dual a #

Bounded a => Bounded (Dual a) 

Methods

minBound :: Dual a #

maxBound :: Dual a #

Eq a => Eq (Dual a) 

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Ord a => Ord (Dual a) 

Methods

compare :: Dual a -> Dual a -> Ordering #

(<) :: Dual a -> Dual a -> Bool #

(<=) :: Dual a -> Dual a -> Bool #

(>) :: Dual a -> Dual a -> Bool #

(>=) :: Dual a -> Dual a -> Bool #

max :: Dual a -> Dual a -> Dual a #

min :: Dual a -> Dual a -> Dual a #

Read a => Read (Dual a) 
Show a => Show (Dual a) 

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Generic (Dual a) 

Associated Types

type Rep (Dual a) :: * -> * #

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Semigroup a => Semigroup (Dual a) 

Methods

(<>) :: Dual a -> Dual a -> Dual a #

sconcat :: NonEmpty (Dual a) -> Dual a #

stimes :: Integral b => b -> Dual a -> Dual a #

Monoid a => Monoid (Dual a) 

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

type Rep1 Dual 
type Rep1 Dual = D1 (MetaData "Dual" "Data.Monoid" "base" True) (C1 (MetaCons "Dual" PrefixI True) (S1 (MetaSel (Just Symbol "getDual") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (Dual a) 
type Rep (Dual a) = D1 (MetaData "Dual" "Data.Monoid" "base" True) (C1 (MetaCons "Dual" PrefixI True) (S1 (MetaSel (Just Symbol "getDual") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

data Endo a :: * -> * #

The monoid of endomorphisms under composition.

Instances

Generic (Endo a) 

Associated Types

type Rep (Endo a) :: * -> * #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Semigroup (Endo a) 

Methods

(<>) :: Endo a -> Endo a -> Endo a #

sconcat :: NonEmpty (Endo a) -> Endo a #

stimes :: Integral b => b -> Endo a -> Endo a #

Monoid (Endo a) 

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

type Rep (Endo a) 
type Rep (Endo a) = D1 (MetaData "Endo" "Data.Monoid" "base" True) (C1 (MetaCons "Endo" PrefixI True) (S1 (MetaSel (Just Symbol "appEndo") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (a -> a))))

data All :: * #

Boolean monoid under conjunction (&&).

Instances

Bounded All 

Methods

minBound :: All #

maxBound :: All #

Eq All 

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Ord All 

Methods

compare :: All -> All -> Ordering #

(<) :: All -> All -> Bool #

(<=) :: All -> All -> Bool #

(>) :: All -> All -> Bool #

(>=) :: All -> All -> Bool #

max :: All -> All -> All #

min :: All -> All -> All #

Read All 
Show All 

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Generic All 

Associated Types

type Rep All :: * -> * #

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Semigroup All 

Methods

(<>) :: All -> All -> All #

sconcat :: NonEmpty All -> All #

stimes :: Integral b => b -> All -> All #

Monoid All 

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

type Rep All 
type Rep All = D1 (MetaData "All" "Data.Monoid" "base" True) (C1 (MetaCons "All" PrefixI True) (S1 (MetaSel (Just Symbol "getAll") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Bool)))

data Any :: * #

Boolean monoid under disjunction (||).

Instances

Bounded Any 

Methods

minBound :: Any #

maxBound :: Any #

Eq Any 

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Ord Any 

Methods

compare :: Any -> Any -> Ordering #

(<) :: Any -> Any -> Bool #

(<=) :: Any -> Any -> Bool #

(>) :: Any -> Any -> Bool #

(>=) :: Any -> Any -> Bool #

max :: Any -> Any -> Any #

min :: Any -> Any -> Any #

Read Any 
Show Any 

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Generic Any 

Associated Types

type Rep Any :: * -> * #

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Semigroup Any 

Methods

(<>) :: Any -> Any -> Any #

sconcat :: NonEmpty Any -> Any #

stimes :: Integral b => b -> Any -> Any #

Monoid Any 

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

type Rep Any 
type Rep Any = D1 (MetaData "Any" "Data.Monoid" "base" True) (C1 (MetaCons "Any" PrefixI True) (S1 (MetaSel (Just Symbol "getAny") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Bool)))

data Sum a :: * -> * #

Monoid under addition.

Instances

Monad Sum 

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Functor Sum 

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Applicative Sum 

Methods

pure :: a -> Sum a #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b #

(*>) :: Sum a -> Sum b -> Sum b #

(<*) :: Sum a -> Sum b -> Sum a #

Foldable Sum 

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Traversable Sum 

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Generic1 Sum 

Associated Types

type Rep1 (Sum :: * -> *) :: * -> * #

Methods

from1 :: Sum a -> Rep1 Sum a #

to1 :: Rep1 Sum a -> Sum a #

Bounded a => Bounded (Sum a) 

Methods

minBound :: Sum a #

maxBound :: Sum a #

Eq a => Eq (Sum a) 

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Num a => Num (Sum a) 

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Ord a => Ord (Sum a) 

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

Read a => Read (Sum a) 
Show a => Show (Sum a) 

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Generic (Sum a) 

Associated Types

type Rep (Sum a) :: * -> * #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Num a => Semigroup (Sum a) 

Methods

(<>) :: Sum a -> Sum a -> Sum a #

sconcat :: NonEmpty (Sum a) -> Sum a #

stimes :: Integral b => b -> Sum a -> Sum a #

Num a => Monoid (Sum a) 

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

type Rep1 Sum 
type Rep1 Sum = D1 (MetaData "Sum" "Data.Monoid" "base" True) (C1 (MetaCons "Sum" PrefixI True) (S1 (MetaSel (Just Symbol "getSum") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (Sum a) 
type Rep (Sum a) = D1 (MetaData "Sum" "Data.Monoid" "base" True) (C1 (MetaCons "Sum" PrefixI True) (S1 (MetaSel (Just Symbol "getSum") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

data Product a :: * -> * #

Monoid under multiplication.

Instances

Monad Product 

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Functor Product 

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Applicative Product 

Methods

pure :: a -> Product a #

(<*>) :: Product (a -> b) -> Product a -> Product b #

(*>) :: Product a -> Product b -> Product b #

(<*) :: Product a -> Product b -> Product a #

Foldable Product 

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Traversable Product 

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Generic1 Product 

Associated Types

type Rep1 (Product :: * -> *) :: * -> * #

Methods

from1 :: Product a -> Rep1 Product a #

to1 :: Rep1 Product a -> Product a #

Bounded a => Bounded (Product a) 
Eq a => Eq (Product a) 

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Num a => Num (Product a) 

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Ord a => Ord (Product a) 

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

Read a => Read (Product a) 
Show a => Show (Product a) 

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Generic (Product a) 

Associated Types

type Rep (Product a) :: * -> * #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Num a => Semigroup (Product a) 

Methods

(<>) :: Product a -> Product a -> Product a #

sconcat :: NonEmpty (Product a) -> Product a #

stimes :: Integral b => b -> Product a -> Product a #

Num a => Monoid (Product a) 

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

type Rep1 Product 
type Rep1 Product = D1 (MetaData "Product" "Data.Monoid" "base" True) (C1 (MetaCons "Product" PrefixI True) (S1 (MetaSel (Just Symbol "getProduct") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (Product a) 
type Rep (Product a) = D1 (MetaData "Product" "Data.Monoid" "base" True) (C1 (MetaCons "Product" PrefixI True) (S1 (MetaSel (Just Symbol "getProduct") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

data Option a :: * -> * #

Option is effectively Maybe with a better instance of Monoid, built off of an underlying Semigroup instead of an underlying Monoid.

Ideally, this type would not exist at all and we would just fix the Monoid instance of Maybe

Instances

Monad Option 

Methods

(>>=) :: Option a -> (a -> Option b) -> Option b #

(>>) :: Option a -> Option b -> Option b #

return :: a -> Option a #

fail :: String -> Option a #

Functor Option 

Methods

fmap :: (a -> b) -> Option a -> Option b #

(<$) :: a -> Option b -> Option a #

MonadFix Option 

Methods

mfix :: (a -> Option a) -> Option a #

Applicative Option 

Methods

pure :: a -> Option a #

(<*>) :: Option (a -> b) -> Option a -> Option b #

(*>) :: Option a -> Option b -> Option b #

(<*) :: Option a -> Option b -> Option a #

Foldable Option 

Methods

fold :: Monoid m => Option m -> m #

foldMap :: Monoid m => (a -> m) -> Option a -> m #

foldr :: (a -> b -> b) -> b -> Option a -> b #

foldr' :: (a -> b -> b) -> b -> Option a -> b #

foldl :: (b -> a -> b) -> b -> Option a -> b #

foldl' :: (b -> a -> b) -> b -> Option a -> b #

foldr1 :: (a -> a -> a) -> Option a -> a #

foldl1 :: (a -> a -> a) -> Option a -> a #

toList :: Option a -> [a] #

null :: Option a -> Bool #

length :: Option a -> Int #

elem :: Eq a => a -> Option a -> Bool #

maximum :: Ord a => Option a -> a #

minimum :: Ord a => Option a -> a #

sum :: Num a => Option a -> a #

product :: Num a => Option a -> a #

Traversable Option 

Methods

traverse :: Applicative f => (a -> f b) -> Option a -> f (Option b) #

sequenceA :: Applicative f => Option (f a) -> f (Option a) #

mapM :: Monad m => (a -> m b) -> Option a -> m (Option b) #

sequence :: Monad m => Option (m a) -> m (Option a) #

Generic1 Option 

Associated Types

type Rep1 (Option :: * -> *) :: * -> * #

Methods

from1 :: Option a -> Rep1 Option a #

to1 :: Rep1 Option a -> Option a #

Alternative Option 

Methods

empty :: Option a #

(<|>) :: Option a -> Option a -> Option a #

some :: Option a -> Option [a] #

many :: Option a -> Option [a] #

MonadPlus Option 

Methods

mzero :: Option a #

mplus :: Option a -> Option a -> Option a #

Eq a => Eq (Option a) 

Methods

(==) :: Option a -> Option a -> Bool #

(/=) :: Option a -> Option a -> Bool #

Data a => Data (Option a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Option a -> c (Option a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Option a) #

toConstr :: Option a -> Constr #

dataTypeOf :: Option a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Option a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Option a)) #

gmapT :: (forall b. Data b => b -> b) -> Option a -> Option a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Option a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Option a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Option a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Option a -> m (Option a) #

Ord a => Ord (Option a) 

Methods

compare :: Option a -> Option a -> Ordering #

(<) :: Option a -> Option a -> Bool #

(<=) :: Option a -> Option a -> Bool #

(>) :: Option a -> Option a -> Bool #

(>=) :: Option a -> Option a -> Bool #

max :: Option a -> Option a -> Option a #

min :: Option a -> Option a -> Option a #

Read a => Read (Option a) 
Show a => Show (Option a) 

Methods

showsPrec :: Int -> Option a -> ShowS #

show :: Option a -> String #

showList :: [Option a] -> ShowS #

Generic (Option a) 

Associated Types

type Rep (Option a) :: * -> * #

Methods

from :: Option a -> Rep (Option a) x #

to :: Rep (Option a) x -> Option a #

Semigroup a => Semigroup (Option a) 

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Semigroup a => Monoid (Option a) 

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

type Rep1 Option 
type Rep1 Option = D1 (MetaData "Option" "Data.Semigroup" "base" True) (C1 (MetaCons "Option" PrefixI True) (S1 (MetaSel (Just Symbol "getOption") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 Maybe)))
type Rep (Option a) 
type Rep (Option a) = D1 (MetaData "Option" "Data.Semigroup" "base" True) (C1 (MetaCons "Option" PrefixI True) (S1 (MetaSel (Just Symbol "getOption") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Maybe a))))

option :: b -> (a -> b) -> Option a -> b #

Fold an Option case-wise, just like maybe.

diff :: Semigroup m => m -> Endo m #

This lets you use a difference list of a Semigroup as a Monoid.

cycle1 :: Semigroup m => m -> m #

A generalization of cycle to an arbitrary Semigroup. May fail to terminate for some values in some semigroups.

data WrappedMonoid m :: * -> * #

Provide a Semigroup for an arbitrary Monoid.

Instances

Generic1 WrappedMonoid 

Associated Types

type Rep1 (WrappedMonoid :: * -> *) :: * -> * #

Bounded a => Bounded (WrappedMonoid a) 
Enum a => Enum (WrappedMonoid a) 
Eq m => Eq (WrappedMonoid m) 
Data m => Data (WrappedMonoid m) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) #

toConstr :: WrappedMonoid m -> Constr #

dataTypeOf :: WrappedMonoid m -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) #

gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r #

gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedMonoid m -> m (WrappedMonoid m) #

Ord m => Ord (WrappedMonoid m) 
Read m => Read (WrappedMonoid m) 
Show m => Show (WrappedMonoid m) 
Generic (WrappedMonoid m) 

Associated Types

type Rep (WrappedMonoid m) :: * -> * #

Monoid m => Semigroup (WrappedMonoid m) 
Monoid m => Monoid (WrappedMonoid m) 
type Rep1 WrappedMonoid 
type Rep1 WrappedMonoid = D1 (MetaData "WrappedMonoid" "Data.Semigroup" "base" True) (C1 (MetaCons "WrapMonoid" PrefixI True) (S1 (MetaSel (Just Symbol "unwrapMonoid") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep (WrappedMonoid m) 
type Rep (WrappedMonoid m) = D1 (MetaData "WrappedMonoid" "Data.Semigroup" "base" True) (C1 (MetaCons "WrapMonoid" PrefixI True) (S1 (MetaSel (Just Symbol "unwrapMonoid") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 m)))

data Arg a b :: * -> * -> * #

Arg isn't itself a Semigroup in its own right, but it can be placed inside Min and Max to compute an arg min or arg max.

Constructors

Arg a b 

Instances

Bifunctor Arg 

Methods

bimap :: (a -> b) -> (c -> d) -> Arg a c -> Arg b d #

first :: (a -> b) -> Arg a c -> Arg b c #

second :: (b -> c) -> Arg a b -> Arg a c #

Functor (Arg a) 

Methods

fmap :: (a -> b) -> Arg a a -> Arg a b #

(<$) :: a -> Arg a b -> Arg a a #

Foldable (Arg a) 

Methods

fold :: Monoid m => Arg a m -> m #

foldMap :: Monoid m => (a -> m) -> Arg a a -> m #

foldr :: (a -> b -> b) -> b -> Arg a a -> b #

foldr' :: (a -> b -> b) -> b -> Arg a a -> b #

foldl :: (b -> a -> b) -> b -> Arg a a -> b #

foldl' :: (b -> a -> b) -> b -> Arg a a -> b #

foldr1 :: (a -> a -> a) -> Arg a a -> a #

foldl1 :: (a -> a -> a) -> Arg a a -> a #

toList :: Arg a a -> [a] #

null :: Arg a a -> Bool #

length :: Arg a a -> Int #

elem :: Eq a => a -> Arg a a -> Bool #

maximum :: Ord a => Arg a a -> a #

minimum :: Ord a => Arg a a -> a #

sum :: Num a => Arg a a -> a #

product :: Num a => Arg a a -> a #

Traversable (Arg a) 

Methods

traverse :: Applicative f => (a -> f b) -> Arg a a -> f (Arg a b) #

sequenceA :: Applicative f => Arg a (f a) -> f (Arg a a) #

mapM :: Monad m => (a -> m b) -> Arg a a -> m (Arg a b) #

sequence :: Monad m => Arg a (m a) -> m (Arg a a) #

Generic1 (Arg a) 

Associated Types

type Rep1 (Arg a :: * -> *) :: * -> * #

Methods

from1 :: Arg a a -> Rep1 (Arg a) a #

to1 :: Rep1 (Arg a) a -> Arg a a #

Eq a => Eq (Arg a b) 

Methods

(==) :: Arg a b -> Arg a b -> Bool #

(/=) :: Arg a b -> Arg a b -> Bool #

(Data b, Data a) => Data (Arg a b) 

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) #

toConstr :: Arg a b -> Constr #

dataTypeOf :: Arg a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) #

gmapT :: (forall c. Data c => c -> c) -> Arg a b -> Arg a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) #

Ord a => Ord (Arg a b) 

Methods

compare :: Arg a b -> Arg a b -> Ordering #

(<) :: Arg a b -> Arg a b -> Bool #

(<=) :: Arg a b -> Arg a b -> Bool #

(>) :: Arg a b -> Arg a b -> Bool #

(>=) :: Arg a b -> Arg a b -> Bool #

max :: Arg a b -> Arg a b -> Arg a b #

min :: Arg a b -> Arg a b -> Arg a b #

(Read b, Read a) => Read (Arg a b) 

Methods

readsPrec :: Int -> ReadS (Arg a b) #

readList :: ReadS [Arg a b] #

readPrec :: ReadPrec (Arg a b) #

readListPrec :: ReadPrec [Arg a b] #

(Show b, Show a) => Show (Arg a b) 

Methods

showsPrec :: Int -> Arg a b -> ShowS #

show :: Arg a b -> String #

showList :: [Arg a b] -> ShowS #

Generic (Arg a b) 

Associated Types

type Rep (Arg a b) :: * -> * #

Methods

from :: Arg a b -> Rep (Arg a b) x #

to :: Rep (Arg a b) x -> Arg a b #

type Rep1 (Arg a) 
type Rep (Arg a b) 

type ArgMin a b = Min (Arg a b) #

type ArgMax a b = Max (Arg a b) #