{-# LANGUAGE TypeApplications #-} {-# Language CPP #-} {-# Language DataKinds #-} {-# Language ExplicitForAll #-} {-# Language FlexibleInstances #-} {-# Language LambdaCase #-} {-# Language ScopedTypeVariables #-} {-# Language StandaloneDeriving #-} {-# Language TypeFamilies #-} {-# Language TypeOperators #-} {-# OPTIONS_GHC -fno-warn-orphans #-} #if __GLASGOW_HASKELL__ >= 805 {-# Language NoStarIsType #-} #endif module Test.Vector ( vecTests ) where import Data.Functor.Const (Const(..)) import Data.Maybe (isJust) import qualified Data.List as List import qualified Data.Parameterized.Context as Ctx import Data.Parameterized.NatRepr import Data.Parameterized.Some import Data.Parameterized.Vector import Data.Semigroup import GHC.TypeLits import Hedgehog import qualified Hedgehog.Gen as HG import Hedgehog.Range import Prelude hiding (take, reverse) import qualified Prelude as P import Test.Tasty import Test.Tasty.Hedgehog import Test.Context (genSomePayloadList, mkUAsgn) genVector :: (1 <= n, KnownNat n, Monad m) => GenT m a -> GenT m (Vector n a) genVector genElem = do let n = knownNat w = widthVal n l <- HG.list (constant w w) genElem case fromList n l of Just v -> return v Nothing -> error ("fromList failure for size " <> show w) genOrdering :: Monad m => GenT m Ordering genOrdering = HG.element [ LT, EQ, GT ] instance Show (a -> b) where show _ = "unshowable" -- We use @Ordering@ just because it's simple vecTests :: IO TestTree vecTests = testGroup "Vector" <$> return [ testProperty "reverse100" $ property $ do v <- forAll $ genVector @100 genOrdering v === (reverse $ reverse v) , testProperty "reverseSingleton" $ property $ do l <- (:[]) <$> forAll genOrdering Just v <- return $ fromList (knownNat @1) l v === reverse v , testProperty "split-join" $ property $ do let n = knownNat @5 v <- forAll $ genVector @(5 * 5) genOrdering v === (join n $ split n (knownNat @5) v) -- @cons@ is the same for vectors or lists , testProperty "cons" $ property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (cons x <$> fromList n l) === fromList (incNat n) (x:l) -- @snoc@ is like appending to a list , testProperty "snoc" $ property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (flip snoc x <$> fromList n l) === fromList (incNat n) (l ++ [x]) -- @snoc@ and @unsnoc@ are inverses , testProperty "snoc/unsnoc" $ property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (fst . unsnoc . flip snoc x <$> fromList n l) === Just x -- @generate@ is like mapping a function over indices , testProperty "generate" $ property $ do let n = knownNat @55 w = widthVal n funs :: [ Int -> Ordering ] -- some miscellaneous functions to generate Vector values funs = [ const EQ , \i -> if i < 10 then LT else if i > 15 then GT else EQ , \i -> if i == 0 then EQ else GT ] f <- forAll $ HG.element funs Just (generate n (f . widthVal)) === fromList (incNat n) (map f [0..w]) -- @unfold@ works like @unfold@ on lists , testProperty "unfold" $ property $ do let n = knownNat @55 w = widthVal n funs :: [ Ordering -> (Ordering, Ordering) ] -- some miscellaneous functions to generate Vector values funs = [ const (EQ, EQ) , \case LT -> (LT, GT) GT -> (GT, LT) EQ -> (EQ, EQ) ] f <- forAll $ HG.element funs o <- forAll $ HG.element [EQ, LT, GT] Just (unfoldr n f o) === fromList (incNat n) (P.take (w + 1) (List.unfoldr (Just . f) o)) -- Converting to and from assignments preserves size and last element , testProperty "to-from-assignment" $ property $ do vals <- forAll genSomePayloadList Some a <- return $ mkUAsgn vals let sz = Ctx.size a case Ctx.viewSize sz of Ctx.ZeroSize -> pure () Ctx.IncSize _ -> let a' = toAssignment sz (\_idx val -> Const val) (fromAssignment Some a) in do assert $ isJust $ testEquality (Ctx.sizeToNatRepr sz) (Ctx.sizeToNatRepr (Ctx.size a')) viewSome (\lastElem -> assert $ isJust $ testEquality (a Ctx.! Ctx.lastIndex sz) lastElem) (getConst (a' Ctx.! Ctx.lastIndex sz)) ]