{-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE TypeApplications #-} {-# Language CPP #-} {-# Language DataKinds #-} {-# Language ExplicitForAll #-} {-# Language FlexibleInstances #-} {-# Language LambdaCase #-} {-# Language ScopedTypeVariables #-} {-# Language StandaloneDeriving #-} {-# Language TypeFamilies #-} {-# Language TypeOperators #-} {-# OPTIONS_GHC -fno-warn-orphans #-} #if __GLASGOW_HASKELL__ >= 805 {-# Language NoStarIsType #-} #endif module Test.Vector ( vecTests ) where import Data.Functor.Const (Const(..)) import Data.Functor.WithIndex (imap) import Data.Foldable.WithIndex (ifoldMap) import Data.Maybe (isJust) import qualified Data.List as List import qualified Data.Parameterized.Context as Ctx import Data.Parameterized.Fin import Data.Parameterized.NatRepr import Data.Parameterized.Some import Data.Parameterized.Vector import Data.Semigroup import GHC.TypeLits (KnownNat) import Hedgehog import qualified Hedgehog.Gen as HG import Hedgehog.Range import Numeric.Natural (Natural) import Prelude hiding (take, reverse, length) import qualified Prelude as P import Test.Fin (genFin) import Test.Tasty import Test.Tasty.Hedgehog import Test.Context (genSomePayloadList, mkUAsgn) #if __GLASGOW_HASKELL__ >= 806 import qualified Hedgehog.Classes as HC import Test.Tasty.HUnit (assertBool, testCase) #endif data SomeVector a = forall n. SomeVector (Vector n a) instance Show a => Show (SomeVector a) where show (SomeVector v) = show v genVectorOfLength :: (Monad m) => NatRepr n -> GenT m a -> GenT m (Vector (n + 1) a) genVectorOfLength n genElem = do let w = widthVal n l <- HG.list (linear (w + 1) (w + 1)) genElem case testLeq (knownNat @1) (incNat n) of Nothing -> error "testLeq in genSomeVector" Just LeqProof -> case fromList (incNat n) l of Just v -> return v Nothing -> error ("fromList failure for size " <> show w) genSomeVector :: (Monad m) => GenT m a -> GenT m (SomeVector a) genSomeVector genElem = do Some len <- mkNatRepr <$> HG.integral (linear 0 (99 :: Natural)) SomeVector <$> genVectorOfLength len genElem genVectorKnownLength :: (1 <= n, KnownNat n, Monad m) => GenT m a -> GenT m (Vector n a) genVectorKnownLength genElem = do let n = knownNat w = widthVal n l <- HG.list (constant w w) genElem case fromList n l of Just v -> return v Nothing -> error ("fromList failure for size " <> show w) genOrdering :: Monad m => GenT m Ordering genOrdering = HG.element [ LT, EQ, GT ] instance Show (a -> b) where show _ = "unshowable" -- Used to test e.g., 'fmap (g . f) = fmap g . fmap f' and 'imap (const f) = -- fmap f'. orderingEndomorphisms :: [Ordering -> Ordering] orderingEndomorphisms = [ const EQ , id , \case EQ -> EQ LT -> GT GT -> LT , \case LT -> EQ EQ -> GT GT -> LT ] -- We use @Ordering@ just because it's simple vecTests :: IO TestTree vecTests = testGroup "Vector" <$> return [ testProperty "reverse100" $ property $ do SomeVector v <- forAll $ genSomeVector genOrdering case testLeq (knownNat @1) (length v) of Nothing -> pure () Just LeqProof -> v === (reverse $ reverse v) , testProperty "reverseSingleton" $ property $ do l <- (:[]) <$> forAll genOrdering Just v <- return $ fromList (knownNat @1) l v === reverse v , testProperty "split-join" $ property $ do let n = knownNat @5 v <- forAll $ genVectorKnownLength @(5 * 5) genOrdering v === (join n $ split n (knownNat @5) v) -- @cons@ is the same for vectors or lists , testProperty "cons" $ property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (cons x <$> fromList n l) === fromList (incNat n) (x:l) -- @snoc@ is like appending to a list , testProperty "snoc" $ property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (flip snoc x <$> fromList n l) === fromList (incNat n) (l ++ [x]) -- @snoc@ and @unsnoc@ are inverses , testProperty "snoc/unsnoc" $ property $ do let n = knownNat @20 w = widthVal n l <- forAll $ HG.list (constant w w) genOrdering x <- forAll genOrdering (fst . unsnoc . flip snoc x <$> fromList n l) === Just x -- @generate@ is like mapping a function over indices , testProperty "generate" $ property $ do let n = knownNat @55 w = widthVal n funs :: [ Int -> Ordering ] -- some miscellaneous functions to generate Vector values funs = [ const EQ , \i -> if i < 10 then LT else if i > 15 then GT else EQ , \i -> if i == 0 then EQ else GT ] f <- forAll $ HG.element funs Just (generate n (f . widthVal)) === fromList (incNat n) (map f [0..w]) -- @unfold@ works like @unfold@ on lists , testProperty "unfold" $ property $ do let n = knownNat @55 w = widthVal n funs :: [ Ordering -> (Ordering, Ordering) ] -- some miscellaneous functions to generate Vector values funs = [ const (EQ, EQ) , \case LT -> (LT, GT) GT -> (GT, LT) EQ -> (EQ, EQ) ] f <- forAll $ HG.element funs o <- forAll $ HG.element [EQ, LT, GT] Just (unfoldr n f o) === fromList (incNat n) (P.take (w + 1) (List.unfoldr (Just . f) o)) -- Converting to and from assignments preserves size and last element , testProperty "to-from-assignment" $ property $ do vals <- forAll genSomePayloadList Some a <- return $ mkUAsgn vals let sz = Ctx.size a case Ctx.viewSize sz of Ctx.ZeroSize -> pure () Ctx.IncSize _ -> let a' = toAssignment sz (\_idx val -> Const val) (fromAssignment Some a) in do assert $ isJust $ testEquality (Ctx.sizeToNatRepr sz) (Ctx.sizeToNatRepr (Ctx.size a')) viewSome (\lastElem -> assert $ isJust $ testEquality (a Ctx.! Ctx.lastIndex sz) lastElem) (getConst (a' Ctx.! Ctx.lastIndex sz)) -- NOTE: We don't use hedgehog-classes here, because the way the types work -- would require this to only tests vectors of some fixed size. -- -- Also, for 'fmap-compose', hedgehog-classes only tests two fixed functions -- over integers. , testProperty "fmap-id" $ property $ do SomeVector v <- forAll $ genSomeVector genOrdering fmap id v === v , testProperty "fmap-compose" $ property $ do SomeVector v <- forAll $ genSomeVector genOrdering f <- forAll $ HG.element orderingEndomorphisms g <- forAll $ HG.element orderingEndomorphisms fmap (g . f) v === fmap g (fmap f v) , testProperty "iterateN-range" $ property $ do Some len <- mkNatRepr <$> forAll (HG.integral (linear 0 (99 :: Natural))) toList (iterateN len (+1) 0) === [0..(natValue len)] , testProperty "indicesOf-range" $ property $ do SomeVector v <- forAll $ genSomeVector genOrdering toList (fmap (viewFin natValue) (indicesOf v)) === [0..(natValue (length v) - 1)] , testProperty "imap-const" $ property $ do f <- forAll $ HG.element orderingEndomorphisms SomeVector v <- forAll $ genSomeVector genOrdering imap (const f) v === fmap f v , testProperty "ifoldMap-const" $ property $ do let funs :: [ Ordering -> String ] funs = [const "s", show] f <- forAll $ HG.element funs SomeVector v <- forAll $ genSomeVector genOrdering ifoldMap (const f) v === foldMap f v , testProperty "imap-const-indicesOf" $ property $ do SomeVector v <- forAll $ genSomeVector genOrdering imap const v === indicesOf v , testProperty "imap-elemAt" $ property $ do SomeVector v <- forAll $ genSomeVector genOrdering imap (\i _ -> viewFin (\x -> elemAt x v) i) v === v , testProperty "Ord-Eq-VectorIndex" $ property $ do i <- forAll $ genFin (knownNat @10) j <- forAll $ genFin (knownNat @10) (i == j) === (compare i j == EQ) #if __GLASGOW_HASKELL__ >= 806 -- Test a few different sizes since the types force each test to use a -- specific size vector. , testCase "Eq-Vector-laws-1" $ assertBool "Eq-Vector-laws-1" =<< HC.lawsCheck (HC.eqLaws (genVectorKnownLength @1 genOrdering)) , testCase "Eq-Vector-laws-10" $ assertBool "Eq-Vector-laws-10" =<< HC.lawsCheck (HC.eqLaws (genVectorKnownLength @10 genOrdering)) , testCase "Show-Vector-laws-1" $ assertBool "Show-Vector-laws-1" =<< HC.lawsCheck (HC.showLaws (genVectorKnownLength @1 genOrdering)) , testCase "Show-Vector-laws-10" $ assertBool "Show-Vector-laws-10" =<< HC.lawsCheck (HC.showLaws (genVectorKnownLength @10 genOrdering)) , testCase "Foldable-Vector-laws-1" $ assertBool "Foldable-Vector-laws-1" =<< HC.lawsCheck (HC.foldableLaws (genVectorKnownLength @1)) , testCase "Foldable-Vector-laws-10" $ assertBool "Foldable-Vector-laws-10" =<< HC.lawsCheck (HC.foldableLaws (genVectorKnownLength @10)) , testCase "Traversable-Vector-laws-1" $ assertBool "Traversable-Vector-laws-1" =<< HC.lawsCheck (HC.traversableLaws (genVectorKnownLength @1)) , testCase "Traversable-Vector-laws-10" $ assertBool "Traversable-Vector-laws-10" =<< HC.lawsCheck (HC.traversableLaws (genVectorKnownLength @10)) #endif ]