{-# OPTIONS_GHC -w #-} {-# OPTIONS -fglasgow-exts -cpp #-} module Parse where import Lex import Term import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts -- parser produced by Happy Version 1.19.3 newtype HappyAbsSyn t8 t9 t10 t11 = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn5 :: ([(VarId,Term)]) -> (HappyAbsSyn t8 t9 t10 t11) happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn5 #-} happyOut5 :: (HappyAbsSyn t8 t9 t10 t11) -> ([(VarId,Term)]) happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut5 #-} happyIn6 :: ((VarId,Term)) -> (HappyAbsSyn t8 t9 t10 t11) happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn6 #-} happyOut6 :: (HappyAbsSyn t8 t9 t10 t11) -> ((VarId,Term)) happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut6 #-} happyIn7 :: (Term) -> (HappyAbsSyn t8 t9 t10 t11) happyIn7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn7 #-} happyOut7 :: (HappyAbsSyn t8 t9 t10 t11) -> (Term) happyOut7 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut7 #-} happyIn8 :: t8 -> (HappyAbsSyn t8 t9 t10 t11) happyIn8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn8 #-} happyOut8 :: (HappyAbsSyn t8 t9 t10 t11) -> t8 happyOut8 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut8 #-} happyIn9 :: t9 -> (HappyAbsSyn t8 t9 t10 t11) happyIn9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn9 #-} happyOut9 :: (HappyAbsSyn t8 t9 t10 t11) -> t9 happyOut9 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut9 #-} happyIn10 :: t10 -> (HappyAbsSyn t8 t9 t10 t11) happyIn10 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn10 #-} happyOut10 :: (HappyAbsSyn t8 t9 t10 t11) -> t10 happyOut10 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut10 #-} happyIn11 :: t11 -> (HappyAbsSyn t8 t9 t10 t11) happyIn11 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn11 #-} happyOut11 :: (HappyAbsSyn t8 t9 t10 t11) -> t11 happyOut11 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut11 #-} happyInTok :: (Token) -> (HappyAbsSyn t8 t9 t10 t11) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn t8 t9 t10 t11) -> (Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x01\x00\x40\x00\x00\x00\x36\x00\x3e\x00\x3d\x00\x32\x00\x34\x00\x30\x00\x04\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x01\x00\x39\x00\x3a\x00\xfa\xff\x38\x00\x00\x00\x04\x00\x04\x00\x04\x00\x04\x00\x01\x00\x00\x00\xf5\xff\x30\x00\x30\x00\x04\x00\x04\x00\x01\x00\x00\x00\x01\x00\x00\x00\x0b\x00\x00\x00\x01\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x27\x00\x37\x00\x00\x00\x00\x00\x35\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\x00\x00\x00\x00\x00\x00\x00\x00\x22\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2e\x00\x2c\x00\x2a\x00\x05\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\xfb\xff\x18\x00\x00\x00\x13\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\x00\x00\xfd\xff\x00\x00\x00\x00\xfd\xff\x00\x00\x00\x00\xf8\xff\xf5\xff\xf2\xff\xf0\xff\x00\x00\xef\xff\xee\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf1\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfc\xff\x00\x00\xf6\xff\xf7\xff\xf3\xff\xf4\xff\x00\x00\xed\xff\x00\x00\xf9\xff\x00\x00\xfb\xff\x00\x00\xfa\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x06\x00\x01\x00\x0e\x00\x03\x00\x04\x00\x0c\x00\x03\x00\x04\x00\x04\x00\x05\x00\x06\x00\x0b\x00\x02\x00\x0d\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x02\x00\x03\x00\x04\x00\x05\x00\x06\x00\x04\x00\x05\x00\x06\x00\x05\x00\x06\x00\x05\x00\x06\x00\x00\x00\x01\x00\x00\x00\x01\x00\x09\x00\x0a\x00\x07\x00\x08\x00\x04\x00\x06\x00\x05\x00\x04\x00\x0f\x00\x04\x00\x06\x00\x04\x00\x0f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x13\x00\x0c\x00\x25\x00\x0d\x00\x0e\x00\x21\x00\x0d\x00\x0e\x00\x1b\x00\x09\x00\x0a\x00\x0f\x00\x26\x00\x10\x00\x0f\x00\x26\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x22\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x23\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x1a\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x11\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x1c\x00\x09\x00\x0a\x00\x1d\x00\x0a\x00\x1e\x00\x0a\x00\x19\x00\x04\x00\x03\x00\x04\x00\x15\x00\x16\x00\x17\x00\x18\x00\x11\x00\x20\x00\x22\x00\x13\x00\xff\xff\x06\x00\x19\x00\x06\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (2, 18) [ (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11), (12 , happyReduce_12), (13 , happyReduce_13), (14 , happyReduce_14), (15 , happyReduce_15), (16 , happyReduce_16), (17 , happyReduce_17), (18 , happyReduce_18) ] happy_n_terms = 16 :: Int happy_n_nonterms = 7 :: Int happyReduce_2 = happySpecReduce_0 0# happyReduction_2 happyReduction_2 = happyIn5 ([] ) happyReduce_3 = happySpecReduce_2 0# happyReduction_3 happyReduction_3 happy_x_2 happy_x_1 = case happyOut6 happy_x_1 of { happy_var_1 -> case happyOut5 happy_x_2 of { happy_var_2 -> happyIn5 (happy_var_1 : happy_var_2 )}} happyReduce_4 = happyReduce 4# 1# happyReduction_4 happyReduction_4 (happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_1 of { (TVar happy_var_1) -> case happyOut7 happy_x_3 of { happy_var_3 -> happyIn6 ((happy_var_1,happy_var_3) ) `HappyStk` happyRest}} happyReduce_5 = happyReduce 6# 2# happyReduction_5 happyReduction_5 (happy_x_6 `HappyStk` happy_x_5 `HappyStk` happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_2 of { (TVar happy_var_2) -> case happyOut7 happy_x_4 of { happy_var_4 -> case happyOut7 happy_x_6 of { happy_var_6 -> happyIn7 (Let happy_var_2 happy_var_4 happy_var_6 ) `HappyStk` happyRest}}} happyReduce_6 = happyReduce 4# 2# happyReduction_6 happyReduction_6 (happy_x_4 `HappyStk` happy_x_3 `HappyStk` happy_x_2 `HappyStk` happy_x_1 `HappyStk` happyRest) = case happyOutTok happy_x_2 of { (TVar happy_var_2) -> case happyOut7 happy_x_4 of { happy_var_4 -> happyIn7 (Abs happy_var_2 happy_var_4 ) `HappyStk` happyRest}} happyReduce_7 = happySpecReduce_1 2# happyReduction_7 happyReduction_7 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> happyIn7 (happy_var_1 )} happyReduce_8 = happySpecReduce_3 3# happyReduction_8 happyReduction_8 happy_x_3 happy_x_2 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> case happyOut9 happy_x_3 of { happy_var_3 -> happyIn8 (App (App (Var "+") happy_var_1) happy_var_3 )}} happyReduce_9 = happySpecReduce_3 3# happyReduction_9 happyReduction_9 happy_x_3 happy_x_2 happy_x_1 = case happyOut8 happy_x_1 of { happy_var_1 -> case happyOut9 happy_x_3 of { happy_var_3 -> happyIn8 (App (App (Var "-") happy_var_1) happy_var_3 )}} happyReduce_10 = happySpecReduce_1 3# happyReduction_10 happyReduction_10 happy_x_1 = case happyOut9 happy_x_1 of { happy_var_1 -> happyIn8 (happy_var_1 )} happyReduce_11 = happySpecReduce_3 4# happyReduction_11 happyReduction_11 happy_x_3 happy_x_2 happy_x_1 = case happyOut9 happy_x_1 of { happy_var_1 -> case happyOut10 happy_x_3 of { happy_var_3 -> happyIn9 (App (App (Var "*") happy_var_1) happy_var_3 )}} happyReduce_12 = happySpecReduce_3 4# happyReduction_12 happyReduction_12 happy_x_3 happy_x_2 happy_x_1 = case happyOut9 happy_x_1 of { happy_var_1 -> case happyOut10 happy_x_3 of { happy_var_3 -> happyIn9 (App (App (Var "/") happy_var_1) happy_var_3 )}} happyReduce_13 = happySpecReduce_1 4# happyReduction_13 happyReduction_13 happy_x_1 = case happyOut10 happy_x_1 of { happy_var_1 -> happyIn9 (happy_var_1 )} happyReduce_14 = happySpecReduce_2 5# happyReduction_14 happyReduction_14 happy_x_2 happy_x_1 = case happyOut10 happy_x_1 of { happy_var_1 -> case happyOut11 happy_x_2 of { happy_var_2 -> happyIn10 (App happy_var_1 happy_var_2 )}} happyReduce_15 = happySpecReduce_1 5# happyReduction_15 happyReduction_15 happy_x_1 = case happyOut11 happy_x_1 of { happy_var_1 -> happyIn10 (happy_var_1 )} happyReduce_16 = happySpecReduce_1 6# happyReduction_16 happyReduction_16 happy_x_1 = case happyOutTok happy_x_1 of { (TInt happy_var_1) -> happyIn11 (Int happy_var_1 )} happyReduce_17 = happySpecReduce_1 6# happyReduction_17 happyReduction_17 happy_x_1 = case happyOutTok happy_x_1 of { (TVar happy_var_1) -> happyIn11 (Var happy_var_1 )} happyReduce_18 = happySpecReduce_3 6# happyReduction_18 happyReduction_18 happy_x_3 happy_x_2 happy_x_1 = case happyOut7 happy_x_2 of { happy_var_2 -> happyIn11 (happy_var_2 )} happyNewToken action sts stk [] = happyDoAction 15# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { TLet -> cont 1#; TIn -> cont 2#; TInt happy_dollar_dollar -> cont 3#; TVar happy_dollar_dollar -> cont 4#; TArrow -> cont 5#; TSym '=' -> cont 6#; TSym '+' -> cont 7#; TSym '-' -> cont 8#; TSym '*' -> cont 9#; TSym '/' -> cont 10#; TSym '(' -> cont 11#; TSym ')' -> cont 12#; TSym '\\' -> cont 13#; TSym ';' -> cont 14#; _ -> happyError' (tk:tks) } happyError_ 15# tk tks = happyError' tks happyError_ _ tk tks = happyError' (tk:tks) happyThen :: () => Either String a -> (a -> Either String b) -> Either String b happyThen = (>>=) happyReturn :: () => a -> Either String a happyReturn = (return) happyThen1 m k tks = (>>=) m (\a -> k a tks) happyReturn1 :: () => a -> b -> Either String a happyReturn1 = \a tks -> (return) a happyError' :: () => [(Token)] -> Either String a happyError' = happyError parseExp tks = happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut7 x)) parseBinds tks = happySomeParser where happySomeParser = happyThen (happyParse 1# tks) (\x -> happyReturn (happyOut5 x)) happySeq = happyDontSeq happyError :: [Token] -> Either String a happyError [] = Left "Parse error at end of input" happyError (tk:tks) = Left ("Parse error before " ++ show tk) {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 1 "" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 13 "templates/GenericTemplate.hs" #-} -- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex. #if __GLASGOW_HASKELL__ > 706 #define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool) #define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool) #define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool) #else #define LT(n,m) (n Happy_GHC_Exts.<# m) #define GTE(n,m) (n Happy_GHC_Exts.>=# m) #define EQ(n,m) (n Happy_GHC_Exts.==# m) #endif {-# LINE 46 "templates/GenericTemplate.hs" #-} data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList {-# LINE 67 "templates/GenericTemplate.hs" #-} {-# LINE 77 "templates/GenericTemplate.hs" #-} {-# LINE 86 "templates/GenericTemplate.hs" #-} infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where off = indexShortOffAddr happyActOffsets st off_i = (off Happy_GHC_Exts.+# i) check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#)) then EQ(indexShortOffAddr happyCheck off_i, i) else False action | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 170 "templates/GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk in happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = case happyDrop k (HappyCons (st) (sts)) of sts1@((HappyCons (st1@(action)) (_))) -> let drop_stk = happyDropStk k stk off = indexShortOffAddr happyGotoOffsets st1 off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i in happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where off = indexShortOffAddr happyGotoOffsets st off_i = (off Happy_GHC_Exts.+# nt) new_state = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk@(x `HappyStk` _) = let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "failing" $ happyError_ i tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll :: a notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.