pdf-toolbox-content-0.1.1: A collection of tools for processing PDF files	Source
	Contents
	Index


	Safe Haskell	None
	Language	Haskell2010

Pdf.Content.Processor

Description
Process content stream operators maintaining graphics state
It is pretty experimental


Synopsis	data Processor = Processor {	prState :: GraphicsState
	prStateStack :: [GraphicsState]
	prGlyphDecoder :: GlyphDecoder
	prSpans :: [Span]

}
	data GraphicsState = GraphicsState {	gsInText :: Bool
	gsCurrentTransformMatrix :: Transform Double
	gsFont :: Maybe Name
	gsFontSize :: Maybe Double
	gsTextMatrix :: Transform Double
	gsTextLineMatrix :: Transform Double
	gsTextLeading :: Double
	gsTextCharSpacing :: Double
	gsTextWordSpacing :: Double

}
	type GlyphDecoder = Name -> ByteString -> [(Glyph, Double)]
	data Glyph = Glyph {	glyphCode :: Int
	glyphTopLeft :: Vector Double
	glyphBottomRight :: Vector Double
	glyphText :: Maybe Text

}
	data Span = Span {	spGlyphs :: [Glyph]
	spFontName :: Name

}
	initialGraphicsState :: GraphicsState
	mkProcessor :: Processor
	processOp :: Operator -> Processor -> Either String Processor


Documentation
data Processor Source #
Processor maintains graphics state

Constructors
	Processor	 
	Fields
	prState :: GraphicsState 

	prStateStack :: [GraphicsState] 

	prGlyphDecoder :: GlyphDecoder 

	prSpans :: [Span]Each element is a list of glyphs, drawn in one shot








data GraphicsState Source #
Graphics state

Constructors
	GraphicsState	 
	Fields
	gsInText :: BoolIndicates that we are inside text object


	gsCurrentTransformMatrix :: Transform Double 

	gsFont :: Maybe Name 

	gsFontSize :: Maybe Double 

	gsTextMatrix :: Transform DoubleDefined only inside text object


	gsTextLineMatrix :: Transform DoubleDefined only inside text object


	gsTextLeading :: Double 

	gsTextCharSpacing :: Double 

	gsTextWordSpacing :: Double 






Instances
Instances details	 Show GraphicsState Source #	 
	Instance detailsDefined in Pdf.Content.Processor
 Methods
showsPrec :: Int -> GraphicsState -> ShowS #
show :: GraphicsState -> String #
showList :: [GraphicsState] -> ShowS #





type GlyphDecoder = Name -> ByteString -> [(Glyph, Double)] Source #
Given font name and string, it should return list of glyphs
 and their widths.
Note: it should not try to position or scale glyphs to user space,
 bounding boxes should be defined in glyph space.
Note: glyph width is a distance between the glyph's origin and
 the next glyph's origin, so it generally can't be calculated
 from bounding box
Note: the Processor actually doesn't cares about glyph's
 bounding box, so you can return anything you want


data Glyph Source #
Glyph

Constructors
	Glyph	 
	Fields
	glyphCode :: IntThe code as read from content stream


	glyphTopLeft :: Vector DoubleTop-left corner of glyph's bounding box


	glyphBottomRight :: Vector DoubleBottom-right corner of glyph's bounding box


	glyphText :: Maybe TextText ectracted from the glyph







Instances
Instances details	 Show Glyph Source #	 
	Instance detailsDefined in Pdf.Content.Processor
 Methods
showsPrec :: Int -> Glyph -> ShowS #
show :: Glyph -> String #
showList :: [Glyph] -> ShowS #





data Span Source #
Glyphs drawn in one shot

Constructors
	Span	 
	Fields
	spGlyphs :: [Glyph] 

	spFontName :: Name 







initialGraphicsState :: GraphicsState Source #
Empty graphics state


mkProcessor :: Processor Source #
Create processor in initial state


processOp :: Operator -> Processor -> Either String Processor Source #
Process one operation




Produced by Haddock version 2.24.0

