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	Safe Haskell	None
	Language	Haskell2010

Pdf.Content.Processor

Description
Process content stream operators maintaining graphics state
It is pretty experimental


Synopsis	data Processor = Processor {	prState :: GraphicsState
	prStateStack :: [GraphicsState]
	prGlyphDecoder :: GlyphDecoder
	prSpans :: [Span]

}
	data GraphicsState = GraphicsState {	gsInText :: Bool
	gsCurrentTransformMatrix :: Transform Double
	gsFont :: Maybe Name
	gsFontSize :: Maybe Double
	gsTextMatrix :: Transform Double
	gsTextLineMatrix :: Transform Double
	gsTextLeading :: Double
	gsTextCharSpacing :: Double
	gsTextWordSpacing :: Double

}
	type GlyphDecoder = Name -> ByteString -> [(Glyph, Double)]
	data Glyph = Glyph {	glyphCode :: Int
	glyphTopLeft :: Vector Double
	glyphBottomRight :: Vector Double
	glyphText :: Maybe Text

}
	data Span = Span {	spGlyphs :: [Glyph]
	spFontName :: Name

}
	initialGraphicsState :: GraphicsState
	mkProcessor :: Processor
	processOp :: Operator -> Processor -> Either String Processor


Documentation
data Processor Source #
Processor maintains graphics state

Constructors
	Processor	 
	Fields
	prState :: GraphicsState 

	prStateStack :: [GraphicsState] 

	prGlyphDecoder :: GlyphDecoder 

	prSpans :: [Span]Each element is a list of glyphs, drawn in one shot








data GraphicsState Source #
Graphics state

Constructors
	GraphicsState	 
	Fields
	gsInText :: BoolIndicates that we are inside text object


	gsCurrentTransformMatrix :: Transform Double 

	gsFont :: Maybe Name 

	gsFontSize :: Maybe Double 

	gsTextMatrix :: Transform DoubleDefined only inside text object


	gsTextLineMatrix :: Transform DoubleDefined only inside text object


	gsTextLeading :: Double 

	gsTextCharSpacing :: Double 

	gsTextWordSpacing :: Double 






Instances
Instances details	 Show GraphicsState Source #	 
	Instance detailsDefined in Pdf.Content.Processor
 Methods
showsPrec :: Int -> GraphicsState -> ShowS #
show :: GraphicsState -> String #
showList :: [GraphicsState] -> ShowS #





type GlyphDecoder = Name -> ByteString -> [(Glyph, Double)] Source #
Given font name and string, it should return list of glyphs
 and their widths.
Note: it should not try to position or scale glyphs to user space,
 bounding boxes should be defined in glyph space.
Note: glyph width is a distance between the glyph's origin and
 the next glyph's origin, so it generally can't be calculated
 from bounding box
Note: the Processor actually doesn't cares about glyph's
 bounding box, so you can return anything you want


data Glyph Source #
Glyph

Constructors
	Glyph	 
	Fields
	glyphCode :: IntThe code as read from content stream


	glyphTopLeft :: Vector DoubleTop-left corner of glyph's bounding box


	glyphBottomRight :: Vector DoubleBottom-right corner of glyph's bounding box


	glyphText :: Maybe TextText ectracted from the glyph







Instances
Instances details	 Show Glyph Source #	 
	Instance detailsDefined in Pdf.Content.Processor
 Methods
showsPrec :: Int -> Glyph -> ShowS #
show :: Glyph -> String #
showList :: [Glyph] -> ShowS #





data Span Source #
Glyphs drawn in one shot

Constructors
	Span	 
	Fields
	spGlyphs :: [Glyph] 

	spFontName :: Name 







initialGraphicsState :: GraphicsState Source #
Empty graphics state


mkProcessor :: Processor Source #
Create processor in initial state


processOp :: Operator -> Processor -> Either String Processor Source #
Process one operation
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