{-| This module remains as a wistful reminder of this library's humble origins. This library now builds upon the more general 'Proxy' type, but still keeps the @pipes@ name. Read "Control.Proxy.Tutorial" to learn about this new implementation. The 'Pipe' type is a monad transformer that enriches the base monad with the ability to 'await' or 'yield' data to and from other 'Pipe's. -} module Control.Pipe {-# DEPRECATED "Use 'Control.Proxy' instead of 'Control.Pipe'" #-} ( -- * Types -- $types Pipe(..), Producer, Consumer, Pipeline, -- * Create Pipes -- $create await, yield, pipe, -- * Compose Pipes -- $category (<+<), (>+>), idP, PipeC(..), -- * Run Pipes runPipe ) where import Control.Applicative (Applicative(pure, (<*>))) import Control.Monad.Trans.Class (MonadTrans(lift)) import Control.Proxy.Class (C) import Prelude hiding ((.), id) -- For documentation import Control.Category (Category((.), id), (<<<), (>>>)) {- $types The 'Pipe' type is strongly inspired by Mario Blazevic's @Coroutine@ type in his concurrency article from Issue 19 of The Monad Reader. -} {-| The base type for pipes * @a@ - The type of input received from upstream pipes * @b@ - The type of output delivered to downstream pipes * @m@ - The base monad * @r@ - The type of the return value -} data Pipe a b m r = Await (a -> Pipe a b m r) | Yield b (Pipe a b m r) | M (m (Pipe a b m r)) | Pure r {- Technically, the correct implementation that satisfies the monad transformer laws is: > data PipeF a b x = Await (a -> x) | Yield b x deriving (Functor) > > type Pipe a b = FreeT (PipeF a b) -} instance (Monad m) => Functor (Pipe a b m) where fmap f pr = go pr where go p = case p of Await k -> Await (\a -> go (k a)) Yield b p' -> Yield b (go p') M m -> M (m >>= \p' -> return (go p')) Pure r -> Pure (f r) instance (Monad m) => Applicative (Pipe a b m) where pure = Pure pf <*> px = go pf where go p = case p of Await k -> Await (\a -> go (k a)) Yield b p' -> Yield b (go p') M m -> M (m >>= \p' -> return (go p')) Pure f -> fmap f px instance (Monad m) => Monad (Pipe a b m) where return = Pure pm >>= f = go pm where go p = case p of Await k -> Await (\a -> go (k a)) Yield b p' -> Yield b (go p') M m -> M (m >>= \p' -> return (go p')) Pure r -> f r instance MonadTrans (Pipe a b) where lift m = M (m >>= \r -> return (Pure r)) -- | A pipe that produces values type Producer b m r = Pipe () b m r -- | A pipe that consumes values type Consumer a m r = Pipe a C m r -- | A self-contained pipeline that is ready to be run type Pipeline m r = Pipe () C m r {- $create 'yield' and 'await' are the only two primitives you need to create pipes. Since @Pipe a b m@ is a monad, you can assemble 'yield' and 'await' statements using ordinary @do@ notation. Since @Pipe a b@ is also a monad transformer, you can use 'lift' to invoke the base monad. For example, you could write a pipe stage that requests permission before forwarding any output: > check :: (Show a) => Pipe a a IO r > check = forever $ do > x <- await > lift $ putStrLn $ "Can '" ++ (show x) ++ "' pass?" > ok <- read <$> lift getLine > when ok (yield x) -} {-| Wait for input from upstream. 'await' blocks until input is available from upstream. -} await :: Pipe a b m a await = Await Pure {-| Deliver output downstream. 'yield' restores control back upstream and binds its value to 'await'. -} yield :: b -> Pipe a b m () yield b = Yield b (Pure ()) {-| Convert a pure function into a pipe > pipe f = forever $ do > x <- await > yield (f x) -} pipe :: (Monad m) => (a -> b) -> Pipe a b m r pipe f = go where go = Await (\a -> Yield (f a) go) {- $category 'Pipe's form a 'Category', meaning that you can compose 'Pipe's using ('>+>') and also define an identity 'Pipe': 'idP'. These satisfy the category laws: > idP >+> p = p > > p >+> idP = p > > (p1 >+> p2) >+> p3 = p1 >+> (p2 >+> p3) @(p1 >+> p2)@ satisfies all 'await's in @p2@ with 'yield's in @p1@. If any 'Pipe' terminates the entire 'Pipeline' terminates. -} -- | 'Pipe's form a 'Category' instance when you rearrange the type variables newtype PipeC m r a b = PipeC { unPipeC :: Pipe a b m r} instance (Monad m) => Category (PipeC m r) where id = PipeC idP PipeC p1 . PipeC p2 = PipeC $ p1 <+< p2 -- | Corresponds to ('<<<')/('.') from @Control.Category@ (<+<) :: (Monad m) => Pipe b c m r -> Pipe a b m r -> Pipe a c m r (Yield b p1) <+< p2 = Yield b (p1 <+< p2) (M m ) <+< p2 = M (m >>= \p1 -> return (p1 <+< p2)) (Pure r ) <+< _ = Pure r (Await k ) <+< (Yield b p2) = k b <+< p2 p1 <+< (Await k) = Await (\a -> p1 <+< k a) p1 <+< (M m) = M (m >>= \p2 -> return (p1 <+< p2)) _ <+< (Pure r) = Pure r -- | Corresponds to ('>>>') from @Control.Category@ (>+>) :: (Monad m) => Pipe a b m r -> Pipe b c m r -> Pipe a c m r p2 >+> p1 = p1 <+< p2 infixr 7 <+< infixl 7 >+> -- | Corresponds to 'id' from @Control.Category@ idP :: (Monad m) => Pipe a a m r idP = go where go = Await (\a -> Yield a go) -- | Run the 'Pipe' monad transformer, converting it back into the base monad runPipe :: (Monad m) => Pipe () b m r -> m r runPipe pl = go pl where go p = case p of Yield _ p' -> go p' Await k -> go (k ()) M m -> m >>= go Pure r -> return r