{-| This is an internal module, meaning that it is unsafe to import unless you understand the risks. This module provides the fast proxy implementation, which achieves its speed by weakening the monad transformer laws. These laws do not hold if you can pattern match on the constructors, as the following counter-example illustrates: > lift . return = M . return . Pure > > return = Pure > > lift . return /= return The monad transformer laws do hold when viewed through the safe API exported from "Control.Proxy". Also, you really should not use the constructors anyway, let alone the concrete type and instead you should stick to the 'Proxy' type class API. This not only ensures that your code does not violate the monad transformer laws, but also guarantees that it works with the other proxy implementations and with any proxy transformers. -} {-# LANGUAGE Trustworthy #-} {- The rewrite RULES require the 'TrustWorthy' annotation. Their proofs are pretty trivial since they are just inlining the definition of their respective operators. GHC doesn't do this inlining automatically because the @go@ helper function is recursive. -} module Control.Proxy.Core.Fast ( -- * Types ProxyFast(..), -- * Run Sessions -- $run runProxy, runProxyK, -- * Safety observe ) where import Control.Applicative (Applicative(pure, (<*>))) import Control.Monad.IO.Class (MonadIO(liftIO)) import Control.Monad.Morph (MFunctor(hoist)) import Control.Monad.Trans.Class (MonadTrans(lift)) import Control.Proxy.Class ( Proxy(request, respond, (->>), (>>~), (>\\), (//>), turn), ProxyInternal(return_P, (?>=), lift_P, liftIO_P, hoist_P, thread_P)) {-| A 'ProxyFast' communicates with an upstream interface and a downstream interface. The type variables signify: * @a'@ - The request supplied to the upstream interface * @a @ - The response provided by the upstream interface * @b'@ - The request supplied by the downstream interface * @b @ - The response provided to the downstream interface * @m @ - The base monad * @r @ - The final return value -} data ProxyFast a' a b' b m r = Request a' (a -> ProxyFast a' a b' b m r ) | Respond b (b' -> ProxyFast a' a b' b m r ) | M (m (ProxyFast a' a b' b m r)) | Pure r instance (Monad m) => Functor (ProxyFast a' a b' b m) where fmap f p0 = go p0 where go p = case p of Request a' fa -> Request a' (\a -> go (fa a )) Respond b fb' -> Respond b (\b' -> go (fb' b')) M m -> M (m >>= \p' -> return (go p')) Pure r -> Pure (f r) instance (Monad m) => Applicative (ProxyFast a' a b' b m) where pure = Pure pf <*> px = go pf where go p = case p of Request a' fa -> Request a' (\a -> go (fa a )) Respond b fb' -> Respond b (\b' -> go (fb' b')) M m -> M (m >>= \p' -> return (go p')) Pure f -> fmap f px instance (Monad m) => Monad (ProxyFast a' a b' b m) where return = Pure (>>=) = _bind _bind :: (Monad m) => ProxyFast a' a b' b m r -> (r -> ProxyFast a' a b' b m r') -> ProxyFast a' a b' b m r' p0 `_bind` f = go p0 where go p = case p of Request a' fa -> Request a' (\a -> go (fa a )) Respond b fb' -> Respond b (\b' -> go (fb' b')) M m -> M (m >>= \p' -> return (go p')) Pure r -> f r {-# RULES "_bind (Request a' k) f" forall a' k f . _bind (Request a' k) f = Request a' (\a -> _bind (k a) f); "_bind (Respond b k) f" forall b k f . _bind (Respond b k) f = Respond b (\b' -> _bind (k b') f); "_bind (M m) f" forall m f . _bind (M m) f = M (m >>= \p -> return (_bind p f)); "_bind (Pure r ) f" forall r f . _bind (Pure r) f = f r; #-} -- | Only satisfies monad transformer laws modulo 'observe' instance MonadTrans (ProxyFast a' a b' b) where lift = _lift _lift :: (Monad m) => m r -> ProxyFast a' a b' b m r _lift = \m -> M (m >>= \r -> return (Pure r)) instance MFunctor (ProxyFast a' a b' b) where hoist nat p0 = go (observe p0) where go p = case p of Request a' fa -> Request a' (\a -> go (fa a )) Respond b fb' -> Respond b (\b' -> go (fb' b')) M m -> M (nat (m >>= \p' -> return (go p'))) Pure r -> Pure r instance (MonadIO m) => MonadIO (ProxyFast a' a b' b m) where liftIO m = M (liftIO (m >>= \r -> return (Pure r))) instance ProxyInternal ProxyFast where return_P = Pure (?>=) = _bind lift_P = _lift liftIO_P = liftIO hoist_P = hoist thread_P p s = case p of Request a' fa -> Request (a', s) (\(a , s') -> thread_P (fa a ) s') Respond b fb' -> Respond (b, s) (\(b', s') -> thread_P (fb' b') s') M m -> M (m >>= \p' -> return (thread_P p' s)) Pure r -> Pure (r, s) instance Proxy ProxyFast where fb' ->> p = case p of Request b' fb -> fb' b' >>~ fb Respond c fc' -> Respond c (\c' -> fb' ->> fc' c') M m -> M (m >>= \p' -> return (fb' ->> p')) Pure r -> Pure r p >>~ fb = case p of Request a' fa -> Request a' (\a -> fa a >>~ fb) Respond b fb' -> fb' ->> fb b M m -> M (m >>= \p' -> return (p' >>~ fb)) Pure r -> Pure r request = \a' -> Request a' Pure respond = \b -> Respond b Pure (>\\) = _req (//>) = _resp turn = go where go p = case p of Request a' fa -> Respond a' (\a -> go (fa a )) Respond b fb' -> Request b (\b' -> go (fb' b')) M m -> M (m >>= \p' -> return (go p')) Pure r -> Pure r _req :: (Monad m) => (b' -> ProxyFast a' a x' x m b) -> ProxyFast b' b x' x m c -> ProxyFast a' a x' x m c fb' `_req` p0 = go p0 where go p = case p of Request b' fb -> fb' b' >>= \b -> go (fb b) Respond x fx' -> Respond x (\x' -> go (fx' x')) M m -> M (m >>= \p' -> return (go p')) Pure a -> Pure a {-# RULES "_req fb' (Request b' fb )" forall fb' b' fb . _req fb' (Request b' fb ) = _bind (fb' b') (\b -> _req fb' (fb b)); "_req fb' (Respond x fx')" forall fb' x fx' . _req fb' (Respond x fx') = Respond x (\x' -> _req fb' (fx' x')); "_req fb' (M m )" forall fb' m . _req fb' (M m ) = M (m >>= \p' -> return (_req fb' p')); "_req fb' (Pure a )" forall fb' a . _req fb' (Pure a ) = Pure a; #-} _resp :: (Monad m) => ProxyFast x' x b' b m a' -> (b -> ProxyFast x' x c' c m b') -> ProxyFast x' x c' c m a' p0 `_resp` fb = go p0 where go p = case p of Request x' fx -> Request x' (\x -> go (fx x)) Respond b fb' -> fb b >>= \b' -> go (fb' b') M m -> M (m >>= \p' -> return (go p')) Pure a -> Pure a {-# RULES "_resp (Request x' fx ) fb" forall x' fx fb . _resp (Request x' fx ) fb = Request x' (\x -> _resp (fx x) fb); "_resp (Respond b fb') fb" forall b fb' fb . _resp (Respond b fb') fb = _bind (fb b) (\b' -> _resp (fb' b') fb); "_resp (M m ) fb" forall m fb . _resp (M m ) fb = M (m >>= \p' -> return (_resp p' fb)); "_resp (Pure a ) fb" forall a fb . _resp (Pure a ) fb = Pure a; #-} {- $run The following commands run self-sufficient proxies, converting them back to the base monad. These are the only functions specific to the 'ProxyFast' type. Everything else programs generically over the 'Proxy' type class. Use 'runProxyK' if you are running proxies nested within proxies. It provides a Kleisli arrow as its result that you can pass to another 'runProxy' / 'runProxyK' command. -} -- | Run a self-sufficient 'ProxyFast', converting it back to the base monad run :: (Monad m) => ProxyFast a' () () b m r -> m r run p = case p of Request _ fa -> run (fa ()) Respond _ fb' -> run (fb' ()) M m -> m >>= run Pure r -> return r {-| Run a self-sufficient 'ProxyFast' Kleisli arrow, converting it back to the base monad -} runProxy :: (Monad m) => (() -> ProxyFast a' () () b m r) -> m r runProxy k = run (k ()) {-# INLINABLE runProxy #-} {-| Run a self-sufficient 'ProxyFast' Kleisli arrow, converting it back to a Kleisli arrow in the base monad -} runProxyK :: (Monad m) => (q -> ProxyFast a' () () b m r) -> (q -> m r) runProxyK k q = run (k q) {-# INLINABLE runProxyK #-} {-| The monad transformer laws are correct when viewed through the 'observe' function: > observe (lift (return r)) = observe (return r) > > observe (lift (m >>= f)) = observe (lift m >>= lift . f) This correctness comes at a moderate cost to performance, so use this function sparingly or else you would be better off using "Control.Proxy.Core.Correct". You do not need to use this function if you use the safe API exported from "Control.Proxy", which does not export any functions or constructors that can violate the monad transformer laws. -} observe :: (Monad m) => ProxyFast a' a b' b m r -> ProxyFast a' a b' b m r observe p0 = M (go p0) where go p = case p of M m' -> m' >>= go Pure r -> return (Pure r) Request a' fa -> return (Request a' (\a -> observe (fa a ))) Respond b fb' -> return (Respond b (\b' -> observe (fb' b'))) {-# INLINABLE observe #-}