{-# LANGUAGE RankNTypes #-} {-| This module provides @pipes@ utilities for \"byte streams\", which are streams of strict 'ByteString's chunks. Use byte streams to interact with both 'IO.Handle's and lazy 'ByteString's. To stream to or from 'IO.Handle's, use 'fromHandle' or 'toHandle'. For example, the following program copies data from one file to another: > import Pipes > import qualified Pipes.ByteString as P > import System.IO > > main = > withFile "inFile.txt" ReadMode $ \hIn -> > withFile "outFile.txt" WriteMode $ \hOut -> > runEffect $ P.fromHandle hIn >-> P.toHandle hOut You can stream to and from 'stdin' and 'stdout' using the predefined 'stdin' and 'stdout' proxies, like in the following \"echo\" program: > main = runEffect $ P.stdin >-> P.stdout You can also translate pure lazy 'BL.ByteString's to and from proxies: > import qualified Data.ByteString.Lazy.Char8 as BL > > main = runEffect $ P.fromLazy (BL.pack "Hello, world!\n") >-> P.stdout In addition, this module provides many functions equivalent to lazy 'ByteString' functions so that you can transform or fold byte streams. For example, to stream only the first three lines of 'stdin' to 'stdout' you would write: > import Pipes > import qualified Pipes.ByteString as PB > import qualified Pipes.Parse as PP > > main = runEffect $ takeLines 3 PB.stdin >-> PB.stdout > where > takeLines n = PB.unlines . PP.takeFree n . PB.lines The above program will never bring more than one chunk (~ 32 KB) into memory, no matter how long the lines are. Note that functions in this library are designed to operate on streams that are insensitive to chunk boundaries. This means that they may freely split chunks into smaller chunks and /discard empty chunks/. However, they will /never concatenate chunks/ in order to provide strict upper bounds on memory usage. -} module Pipes.ByteString ( -- * Producers fromLazy, stdin, fromHandle, hGetSome, hGet, -- * Servers hGetSomeN, hGetN, -- * Consumers stdout, toHandle, -- * Pipes map, concatMap, take, drop, takeWhile, dropWhile, filter, elemIndices, findIndices, scan, -- * Folds toLazy, toLazyM, fold, head, last, null, length, any, all, maximum, minimum, elem, notElem, find, index, elemIndex, findIndex, count, -- * Splitters splitAt, chunksOf, span, break, splitWith, split, groupBy, group, lines, words, -- * Transformations intersperse, -- * Joiners intercalate, unlines, unwords, -- * Low-level Parsers -- $parse nextByte, drawByte, unDrawByte, peekByte, isEndOfBytes, takeWhile', -- * Re-exports -- $reexports module Data.ByteString, module Data.Word, module Pipes.Parse ) where import Control.Exception (throwIO, try) import Control.Monad (liftM) import Control.Monad.Trans.State.Strict (StateT, modify) import qualified Data.ByteString as BS import Data.ByteString (ByteString) import Data.ByteString.Internal (isSpaceWord8) import qualified Data.ByteString.Lazy as BL import Data.ByteString.Lazy.Internal (foldrChunks, defaultChunkSize) import Data.ByteString.Unsafe (unsafeTake, unsafeDrop) import Data.Char (ord) import Data.Functor.Identity (Identity) import qualified Data.List as List import Data.Word (Word8) import Foreign.C.Error (Errno(Errno), ePIPE) import qualified GHC.IO.Exception as G import Pipes import Pipes.Core (respond, Server') import qualified Pipes.Parse as PP import Pipes.Parse (input, concat, FreeT) import qualified Pipes.Prelude as P import qualified System.IO as IO import Prelude hiding ( all, any, break, concat, concatMap, drop, dropWhile, elem, filter, head, last, lines, length, map, maximum, minimum, notElem, null, span, splitAt, take, takeWhile, unlines, unwords, words ) -- | Convert a lazy 'BL.ByteString' into a 'Producer' of strict 'ByteString's fromLazy :: (Monad m) => BL.ByteString -> Producer' ByteString m () fromLazy bs = foldrChunks (\e a -> yield e >> a) (return ()) bs {-# INLINABLE fromLazy #-} -- | Stream bytes from 'stdin' stdin :: MonadIO m => Producer' ByteString m () stdin = fromHandle IO.stdin {-# INLINABLE stdin #-} -- | Convert a 'IO.Handle' into a byte stream using a default chunk size fromHandle :: MonadIO m => IO.Handle -> Producer' ByteString m () fromHandle = hGetSome defaultChunkSize -- TODO: Test chunk size for performance {-# INLINABLE fromHandle #-} {-| Convert a handle into a byte stream using a maximum chunk size 'hGetSome' forwards input immediately as it becomes available, splitting the input into multiple chunks if it exceeds the maximum chunk size. -} hGetSome :: MonadIO m => Int -> IO.Handle -> Producer' ByteString m () hGetSome size h = go where go = do eof <- liftIO (IO.hIsEOF h) if eof then return () else do bs <- liftIO (BS.hGetSome h size) yield bs go {-# INLINABLE hGetSome #-} {-| Convert a handle into a byte stream using a fixed chunk size 'hGet' waits until exactly the requested number of bytes are available for each chunk. -} hGet :: MonadIO m => Int -> IO.Handle -> Producer' ByteString m () hGet size h = go where go = do eof <- liftIO (IO.hIsEOF h) if eof then return () else do bs <- liftIO (BS.hGet h size) yield bs go {-# INLINABLE hGet #-} {-| Like 'hGetSome', except you can vary the maximum chunk size for each request -} hGetSomeN :: MonadIO m => IO.Handle -> Int -> Server' Int ByteString m () hGetSomeN h = go where go size = do eof <- liftIO (IO.hIsEOF h) if eof then return () else do bs <- liftIO (BS.hGetSome h size) size2 <- respond bs go size2 {-# INLINABLE hGetSomeN #-} -- | Like 'hGet', except you can vary the chunk size for each request hGetN :: MonadIO m => IO.Handle -> Int -> Server' Int ByteString m () hGetN h = go where go size = do eof <- liftIO (IO.hIsEOF h) if eof then return () else do bs <- liftIO (BS.hGet h size) size2 <- respond bs go size2 {-# INLINABLE hGetN #-} {-| Stream bytes to 'stdout' Unlike 'toHandle', 'stdout' gracefully terminates on a broken output pipe. Note: For best performance, use @(for source (liftIO . putStr))@ instead of @(source >-> stdout)@. -} stdout :: MonadIO m => Consumer' ByteString m () stdout = go where go = do bs <- await x <- liftIO $ try (BS.putStr bs) case x of Left (G.IOError { G.ioe_type = G.ResourceVanished , G.ioe_errno = Just ioe }) | Errno ioe == ePIPE -> return () Left e -> liftIO (throwIO e) Right () -> go {-# INLINABLE stdout #-} {-| Convert a byte stream into a 'Handle' Note: For best performance, use @(for source (liftIO . hPutStr handle))@ instead of @(source >-> toHandle handle)@. -} toHandle :: MonadIO m => IO.Handle -> Consumer' ByteString m r toHandle h = for cat (liftIO . BS.hPut h) {-# INLINABLE toHandle #-} -- | Apply a transformation to each 'Word8' in the stream map :: (Monad m) => (Word8 -> Word8) -> Pipe ByteString ByteString m r map f = P.map (BS.map f) {-# INLINABLE map #-} -- | Map a function over the byte stream and concatenate the results concatMap :: (Monad m) => (Word8 -> ByteString) -> Pipe ByteString ByteString m r concatMap f = P.map (BS.concatMap f) {-# INLINABLE concatMap #-} -- | @(take n)@ only allows @n@ bytes to pass take :: (Monad m, Integral a) => a -> Pipe ByteString ByteString m () take n0 = go n0 where go n | n <= 0 = return () | otherwise = do bs <- await let len = fromIntegral (BS.length bs) if (len > n) then yield (unsafeTake (fromIntegral n) bs) else do yield bs go (n - len) {-# INLINABLE take #-} -- | @(dropD n)@ drops the first @n@ bytes drop :: (Monad m, Integral a) => a -> Pipe ByteString ByteString m r drop n0 = go n0 where go n | n <= 0 = cat | otherwise = do bs <- await let len = fromIntegral (BS.length bs) if (len >= n) then do yield (unsafeDrop (fromIntegral n) bs) cat else go (n - len) {-# INLINABLE drop #-} -- | Take bytes until they fail the predicate takeWhile :: (Monad m) => (Word8 -> Bool) -> Pipe ByteString ByteString m () takeWhile predicate = go where go = do bs <- await let (prefix, suffix) = BS.span predicate bs if (BS.null suffix) then do yield bs go else yield prefix {-# INLINABLE takeWhile #-} -- | Drop bytes until they fail the predicate dropWhile :: (Monad m) => (Word8 -> Bool) -> Pipe ByteString ByteString m r dropWhile predicate = go where go = do bs <- await case BS.findIndex (not . predicate) bs of Nothing -> go Just i -> do yield (unsafeDrop i bs) cat {-# INLINABLE dropWhile #-} -- | Only allows 'Word8's to pass if they satisfy the predicate filter :: (Monad m) => (Word8 -> Bool) -> Pipe ByteString ByteString m r filter predicate = P.map (BS.filter predicate) {-# INLINABLE filter #-} -- | Stream all indices whose elements match the given 'Word8' elemIndices :: (Monad m, Num n) => Word8 -> Pipe ByteString n m r elemIndices w8 = findIndices (w8 ==) {-# INLINABLE elemIndices #-} -- | Stream all indices whose elements satisfy the given predicate findIndices :: (Monad m, Num n) => (Word8 -> Bool) -> Pipe ByteString n m r findIndices predicate = go 0 where go n = do bs <- await each $ List.map (\i -> n + fromIntegral i) (BS.findIndices predicate bs) go $! n + fromIntegral (BS.length bs) {-# INLINABLE findIndices #-} -- | Strict left scan over the bytes scan :: (Monad m) => (Word8 -> Word8 -> Word8) -> Word8 -> Pipe ByteString ByteString m r scan step begin = go begin where go w8 = do bs <- await let bs' = BS.scanl step w8 bs w8' = BS.last bs' yield bs' go w8' {-# INLINABLE scan #-} {-| Fold a pure 'Producer' of strict 'ByteString's into a lazy 'BL.ByteString' -} toLazy :: Producer ByteString Identity () -> BL.ByteString toLazy = BL.fromChunks . P.toList {-# INLINABLE toLazy #-} {-| Fold an effectful 'Producer' of strict 'ByteString's into a lazy 'BL.ByteString' Note: 'toLazyM' is not an idiomatic use of @pipes@, but I provide it for simple testing purposes. Idiomatic @pipes@ style consumes the chunks immediately as they are generated instead of loading them all into memory. -} toLazyM :: (Monad m) => Producer ByteString m () -> m BL.ByteString toLazyM = liftM BL.fromChunks . P.toListM {-# INLINABLE toLazyM #-} -- | Reduce the stream of bytes using a strict left fold fold :: Monad m => (x -> Word8 -> x) -> x -> (x -> r) -> Producer ByteString m () -> m r fold step begin done = P.fold (\x bs -> BS.foldl' step x bs) begin done {-# INLINABLE fold #-} -- | Retrieve the first 'Word8' head :: (Monad m) => Producer ByteString m () -> m (Maybe Word8) head = go where go p = do x <- nextByte p case x of Left _ -> return Nothing Right (w8, _) -> return (Just w8) {-# INLINABLE head #-} -- | Retrieve the last 'Word8' last :: (Monad m) => Producer ByteString m () -> m (Maybe Word8) last = go Nothing where go r p = do x <- next p case x of Left () -> return r Right (bs, p') -> if (BS.null bs) then go r p' else go (Just $ BS.last bs) p' -- TODO: Change this to 'unsafeLast' when bytestring-0.10.2.0 -- becomes more widespread {-# INLINABLE last #-} -- | Determine if the stream is empty null :: (Monad m) => Producer ByteString m () -> m Bool null = P.all BS.null {-# INLINABLE null #-} -- | Count the number of bytes length :: (Monad m, Num n) => Producer ByteString m () -> m n length = P.fold (\n bs -> n + fromIntegral (BS.length bs)) 0 id {-# INLINABLE length #-} -- | Fold that returns whether 'M.Any' received 'Word8's satisfy the predicate any :: (Monad m) => (Word8 -> Bool) -> Producer ByteString m () -> m Bool any predicate = P.any (BS.any predicate) {-# INLINABLE any #-} -- | Fold that returns whether 'M.All' received 'Word8's satisfy the predicate all :: (Monad m) => (Word8 -> Bool) -> Producer ByteString m () -> m Bool all predicate = P.all (BS.all predicate) {-# INLINABLE all #-} -- | Return the maximum 'Word8' within a byte stream maximum :: (Monad m) => Producer ByteString m () -> m (Maybe Word8) maximum = P.fold step Nothing id where step mw8 bs = if (BS.null bs) then mw8 else Just $ case mw8 of Nothing -> BS.maximum bs Just w8 -> max w8 (BS.maximum bs) {-# INLINABLE maximum #-} -- | Return the minimum 'Word8' within a byte stream minimum :: (Monad m) => Producer ByteString m () -> m (Maybe Word8) minimum = P.fold step Nothing id where step mw8 bs = if (BS.null bs) then mw8 else case mw8 of Nothing -> Just (BS.minimum bs) Just w8 -> Just (min w8 (BS.minimum bs)) {-# INLINABLE minimum #-} -- | Determine whether any element in the byte stream matches the given 'Word8' elem :: (Monad m) => Word8 -> Producer ByteString m () -> m Bool elem w8 = P.any (BS.elem w8) {-# INLINABLE elem #-} {-| Determine whether all elements in the byte stream do not match the given 'Word8' -} notElem :: (Monad m) => Word8 -> Producer ByteString m () -> m Bool notElem w8 = P.all (BS.notElem w8) {-# INLINABLE notElem #-} -- | Find the first element in the stream that matches the predicate find :: (Monad m) => (Word8 -> Bool) -> Producer ByteString m () -> m (Maybe Word8) find predicate p = head (p >-> filter predicate) {-# INLINABLE find #-} -- | Index into a byte stream index :: (Monad m, Integral a) => a-> Producer ByteString m () -> m (Maybe Word8) index n p = head (p >-> drop n) {-# INLINABLE index #-} -- | Find the index of an element that matches the given 'Word8' elemIndex :: (Monad m, Num n) => Word8 -> Producer ByteString m () -> m (Maybe n) elemIndex w8 = findIndex (w8 ==) {-# INLINABLE elemIndex #-} -- | Store the first index of an element that satisfies the predicate findIndex :: (Monad m, Num n) => (Word8 -> Bool) -> Producer ByteString m () -> m (Maybe n) findIndex predicate p = P.head (p >-> findIndices predicate) {-# INLINABLE findIndex #-} -- | Store a tally of how many elements match the given 'Word8' count :: (Monad m, Num n) => Word8 -> Producer ByteString m () -> m n count w8 p = P.fold (+) 0 id (p >-> P.map (fromIntegral . BS.count w8)) {-# INLINABLE count #-} -- | Splits a 'Producer' after the given number of bytes splitAt :: (Monad m, Integral n) => n -> Producer ByteString m r -> Producer' ByteString m (Producer ByteString m r) splitAt = go where go 0 p = return p go n p = do x <- lift (next p) case x of Left r -> return (return r) Right (bs, p') -> do let len = fromIntegral (BS.length bs) if (len <= n) then do yield bs go (n - len) p' else do let (prefix, suffix) = BS.splitAt (fromIntegral n) bs yield prefix return (yield suffix >> p') {-# INLINABLE splitAt #-} -- | Split a byte stream into 'FreeT'-delimited byte streams of fixed size chunksOf :: (Monad m, Integral n) => n -> Producer ByteString m r -> FreeT (Producer ByteString m) m r chunksOf n p0 = PP.FreeT (go p0) where go p = do x <- next p return $ case x of Left r -> PP.Pure r Right (bs, p') -> PP.Free $ do p'' <- splitAt n (yield bs >> p') return $ PP.FreeT (go p'') {-# INLINABLE chunksOf #-} {-| Split a byte stream in two, where the first byte stream is the longest consecutive group of bytes that satisfy the predicate -} span :: (Monad m) => (Word8 -> Bool) -> Producer ByteString m r -> Producer' ByteString m (Producer ByteString m r) span predicate = go where go p = do x <- lift (next p) case x of Left r -> return (return r) Right (bs, p') -> do let (prefix, suffix) = BS.span predicate bs if (BS.null suffix) then do yield bs go p' else do yield prefix return (yield suffix >> p') {-# INLINABLE span #-} {-| Split a byte stream in two, where the first byte stream is the longest consecutive group of bytes that don't satisfy the predicate -} break :: (Monad m) => (Word8 -> Bool) -> Producer ByteString m r -> Producer ByteString m (Producer ByteString m r) break predicate = span (not . predicate) {-# INLINABLE break #-} {-| Split a byte stream into sub-streams delimited by bytes that satisfy the predicate -} splitWith :: (Monad m) => (Word8 -> Bool) -> Producer ByteString m r -> PP.FreeT (Producer ByteString m) m r splitWith predicate p0 = PP.FreeT (go0 p0) where go0 p = do x <- next p case x of Left r -> return (PP.Pure r) Right (bs, p') -> if (BS.null bs) then go0 p' else return $ PP.Free $ do p'' <- span (not . predicate) (yield bs >> p') return $ PP.FreeT (go1 p'') go1 p = do x <- nextByte p return $ case x of Left r -> PP.Pure r Right (_, p') -> PP.Free $ do p'' <- span (not . predicate) p' return $ PP.FreeT (go1 p'') {-# INLINABLE splitWith #-} -- | Split a byte stream using the given 'Word8' as the delimiter split :: (Monad m) => Word8 -> Producer ByteString m r -> FreeT (Producer ByteString m) m r split w8 = splitWith (w8 /=) {-# INLINABLE split #-} {-| Group a byte stream into 'FreeT'-delimited byte streams using the supplied equality predicate -} groupBy :: (Monad m) => (Word8 -> Word8 -> Bool) -> Producer ByteString m r -> FreeT (Producer ByteString m) m r groupBy equal p0 = PP.FreeT (go p0) where go p = do x <- next p case x of Left r -> return (PP.Pure r) Right (bs, p') -> case (BS.uncons bs) of Nothing -> go p' Just (w8, _) -> do return $ PP.Free $ do p'' <- span (equal w8) (yield bs >> p') return $ PP.FreeT (go p'') {-# INLINABLE groupBy #-} -- | Group a byte stream into 'FreeT'-delimited byte streams of identical bytes group :: (Monad m) => Producer ByteString m r -> FreeT (Producer ByteString m) m r group = groupBy (==) {-# INLINABLE group #-} {-| Split a byte stream into 'FreeT'-delimited lines Note: This function is purely for demonstration purposes since it assumes a particular encoding. You should prefer the 'Data.Text.Text' equivalent of this function from the upcoming @pipes-text@ library. -} lines :: (Monad m) => Producer ByteString m r -> FreeT (Producer ByteString m) m r lines p0 = PP.FreeT (go0 p0) where go0 p = do x <- next p case x of Left r -> return (PP.Pure r) Right (bs, p') -> if (BS.null bs) then go0 p' else return $ PP.Free $ go1 (yield bs >> p') go1 p = do p' <- break (fromIntegral (ord '\n') ==) p return $ PP.FreeT (go2 p') go2 p = do x <- nextByte p return $ case x of Left r -> PP.Pure r Right (_, p') -> PP.Free (go1 p') {-# INLINABLE lines #-} {-| Split a byte stream into 'FreeT'-delimited words Note: This function is purely for demonstration purposes since it assumes a particular encoding. You should prefer the 'Data.Text.Text' equivalent of this function from the upcoming @pipes-text@ library. -} words :: (Monad m) => Producer ByteString m r -> FreeT (Producer ByteString m) m r words p0 = removeEmpty (splitWith isSpaceWord8 p0) where removeEmpty f = PP.FreeT $ do x <- PP.runFreeT f case x of PP.Pure r -> return (PP.Pure r) PP.Free p -> do y <- next p case y of Left f' -> PP.runFreeT (removeEmpty f') Right (bs, p') -> return $ PP.Free $ do yield bs f' <- p' return (removeEmpty f') {-# INLINABLE words #-} -- | Intersperse a 'Word8' in between the bytes of the byte stream intersperse :: (Monad m) => Word8 -> Producer ByteString m r -> Producer ByteString m r intersperse w8 = go0 where go0 p = do x <- lift (next p) case x of Left r -> return r Right (bs, p') -> do yield (BS.intersperse w8 bs) go1 p' go1 p = do x <- lift (next p) case x of Left r -> return r Right (bs, p') -> do yield (BS.singleton w8) yield (BS.intersperse w8 bs) go1 p' {-# INLINABLE intersperse #-} {-| 'intercalate' concatenates the 'FreeT'-delimited byte streams after interspersing a byte stream in between them -} intercalate :: (Monad m) => Producer ByteString m () -> FreeT (Producer ByteString m) m r -> Producer ByteString m r intercalate p0 = go0 where go0 f = do x <- lift (PP.runFreeT f) case x of PP.Pure r -> return r PP.Free p -> do f' <- p go1 f' go1 f = do x <- lift (PP.runFreeT f) case x of PP.Pure r -> return r PP.Free p -> do p0 f' <- p go1 f' {-# INLINABLE intercalate #-} {-| Join 'FreeT'-delimited lines into a byte stream Note: This function is purely for demonstration purposes since it assumes a particular encoding. You should prefer the 'Data.Text.Text' equivalent of this function from the upcoming @pipes-text@ library. -} unlines :: (Monad m) => FreeT (Producer ByteString m) m r -> Producer ByteString m r unlines = go where go f = do x <- lift (PP.runFreeT f) case x of PP.Pure r -> return r PP.Free p -> do f' <- p yield $ BS.singleton $ fromIntegral (ord '\n') go f' {-# INLINABLE unlines #-} {-| Join 'FreeT'-delimited words into a byte stream Note: This function is purely for demonstration purposes since it assumes a particular encoding. You should prefer the 'Data.Text.Text' equivalent of this function from the upcoming @pipes-text@ library. -} unwords :: (Monad m) => FreeT (Producer ByteString m) m r -> Producer ByteString m r unwords = intercalate (yield $ BS.singleton $ fromIntegral $ ord ' ') {-# INLINABLE unwords #-} {- $parse The following parsing utilities are single-byte analogs of the ones found in @pipes-parse@. -} {-| Consume the first byte from a byte stream 'next' either fails with a 'Left' if the 'Producer' has no more bytes or succeeds with a 'Right' providing the next byte and the remainder of the 'Producer'. -} nextByte :: (Monad m) => Producer ByteString m r -> m (Either r (Word8, Producer ByteString m r)) nextByte = go where go p = do x <- next p case x of Left r -> return (Left r) Right (bs, p') -> case (BS.uncons bs) of Nothing -> go p' Just (w8, bs') -> return (Right (w8, yield bs' >> p')) {-# INLINABLE nextByte #-} {-| Draw one 'Word8' from the underlying 'Producer', returning 'Left' if the 'Producer' is empty -} drawByte :: (Monad m) => StateT (Producer ByteString m r) m (Either r Word8) drawByte = do x <- PP.draw case x of Left r -> return (Left r) Right bs -> case (BS.uncons bs) of Nothing -> drawByte Just (w8, bs') -> do PP.unDraw bs' return (Right w8) {-# INLINABLE drawByte #-} -- | Push back a 'Word8' onto the underlying 'Producer' unDrawByte :: (Monad m) => Word8 -> StateT (Producer ByteString m r) m () unDrawByte w8 = modify (yield (BS.singleton w8) >>) {-# INLINABLE unDrawByte #-} {-| 'peekByte' checks the first 'Word8' in the stream, but uses 'unDrawByte' to push the 'Word8' back > peekByte = do > x <- drawByte > case x of > Left _ -> return () > Right w8 -> unDrawByte w8 > return x -} peekByte :: (Monad m) => StateT (Producer ByteString m r) m (Either r Word8) peekByte = do x <- drawByte case x of Left _ -> return () Right w8 -> unDrawByte w8 return x {-# INLINABLE peekByte #-} {-| Check if the underlying 'Producer' has no more bytes Note that this will skip over empty 'ByteString' chunks, unlike 'PP.isEndOfInput' from @pipes-parse@. > isEndOfBytes = liftM isLeft peekByte -} isEndOfBytes :: (Monad m) => StateT (Producer ByteString m r) m Bool isEndOfBytes = do x <- peekByte return (case x of Left _ -> True Right _ -> False ) {-# INLINABLE isEndOfBytes #-} {-| Take bytes until they fail the predicate Unlike 'takeWhile', this 'PP.unDraw's unused bytes -} takeWhile' :: (Monad m) => (Word8 -> Bool) -> Pipe ByteString ByteString (StateT (Producer ByteString m r) m) () takeWhile' predicate = go where go = do bs <- await let (prefix, suffix) = BS.span predicate bs if (BS.null suffix) then do yield bs go else do lift $ PP.unDraw suffix yield prefix {-# INLINABLE takeWhile' #-} {- $reexports @Data.ByteString@ re-exports the 'ByteString' type. @Data.Word@ re-exports the 'Word8' type. @Pipes.Parse@ re-exports 'input', 'concat', and 'FreeT' (the type). -}