{-# LANGUAGE RankNTypes, TypeFamilies, BangPatterns#-} {-| The module @Pipes.Text@ closely follows @Pipes.ByteString@ from the @pipes-bytestring@ package. A draft tutorial can be found in @Pipes.Text.Tutorial@. -} module Pipes.Text ( -- * Producers fromLazy -- * Pipes , map , concatMap , take , takeWhile , filter , toCaseFold , toLower , toUpper , stripStart , scan -- * Folds , toLazy , toLazyM , foldChars , head , last , null , length , any , all , maximum , minimum , find , index -- * Primitive Character Parsers , nextChar , drawChar , unDrawChar , peekChar , isEndOfChars -- * Parsing Lenses , splitAt , span , break , groupBy , group , word , line -- * Transforming Text and Character Streams , drop , dropWhile , pack , unpack , intersperse -- * FreeT Transformations , chunksOf , splitsWith , splits , groupsBy , groups , lines , unlines , words , unwords , intercalate -- * Re-exports -- $reexports , module Data.ByteString , module Data.Text , module Pipes.Parse , module Pipes.Group ) where import Control.Applicative ((<*)) import Control.Monad (liftM, join) import Data.Functor.Constant (Constant(..)) import Data.Functor.Identity (Identity) import Control.Monad.Trans.State.Strict (modify) import qualified Data.Text as T import Data.Text (Text) import qualified Data.Text.Lazy as TL import Data.ByteString (ByteString) import Data.Char (isSpace) import Foreign.Storable (sizeOf) import Data.Bits (shiftL) import Pipes import Pipes.Group (folds, maps, concats, intercalates, FreeT(..), FreeF(..)) import qualified Pipes.Group as PG import qualified Pipes.Parse as PP import Pipes.Parse (Parser) import qualified Pipes.Prelude as P import Prelude hiding ( all, any, break, concat, concatMap, drop, dropWhile, elem, filter, head, last, lines, length, map, maximum, minimum, notElem, null, readFile, span, splitAt, take, takeWhile, unlines, unwords, words, writeFile ) -- $setup -- >>> :set -XOverloadedStrings -- >>> import Data.Text (Text) -- >>> import qualified Data.Text as T -- >>> import qualified Data.Text.Lazy.IO as TL -- >>> import Data.Char -- | Convert a lazy 'TL.Text' into a 'Producer' of strict 'Text's. Producers in -- IO can be found in 'Pipes.Text.IO' or in pipes-bytestring, employed with the -- decoding lenses in 'Pipes.Text.Encoding' fromLazy :: (Monad m) => TL.Text -> Producer' Text m () fromLazy = TL.foldrChunks (\e a -> yield e >> a) (return ()) {-# INLINE fromLazy #-} (^.) :: a -> ((b -> Constant b b) -> (a -> Constant b a)) -> b a ^. lens = getConstant (lens Constant a) -- | Apply a transformation to each 'Char' in the stream -- >>> let margaret = ["Margaret, are you grieving\nOver Golde","ngrove unleaving?":: Text] -- >>> TL.putStrLn . toLazy $ each margaret >-> map Data.Char.toUpper -- MARGARET, ARE YOU GRIEVING -- OVER GOLDENGROVE UNLEAVING? map :: (Monad m) => (Char -> Char) -> Pipe Text Text m r map f = P.map (T.map f) {-# INLINABLE map #-} -- | Map a function over the characters of a text stream and concatenate the results concatMap :: (Monad m) => (Char -> Text) -> Pipe Text Text m r concatMap f = P.map (T.concatMap f) {-# INLINABLE concatMap #-} -- | @(take n)@ only allows @n@ individual characters to pass; -- contrast @Pipes.Prelude.take@ which would let @n@ chunks pass. take :: (Monad m, Integral a) => a -> Pipe Text Text m () take n0 = go n0 where go n | n <= 0 = return () | otherwise = do txt <- await let len = fromIntegral (T.length txt) if (len > n) then yield (T.take (fromIntegral n) txt) else do yield txt go (n - len) {-# INLINABLE take #-} -- | Take characters until they fail the predicate takeWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m () takeWhile predicate = go where go = do txt <- await let (prefix, suffix) = T.span predicate txt if (T.null suffix) then do yield txt go else yield prefix {-# INLINABLE takeWhile #-} -- | Only allows 'Char's to pass if they satisfy the predicate filter :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r filter predicate = P.map (T.filter predicate) {-# INLINABLE filter #-} -- | Strict left scan over the characters -- >>> let margaret = ["Margaret, are you grieving\nOver Golde","ngrove unleaving?":: Text] -- >>> let title_caser a x = case a of ' ' -> Data.Char.toUpper x; _ -> x -- >>> toLazy $ each margaret >-> scan title_caser ' ' -- " Margaret, Are You Grieving\nOver Goldengrove Unleaving?" scan :: (Monad m) => (Char -> Char -> Char) -> Char -> Pipe Text Text m r scan step begin = do yield (T.singleton begin) go begin where go c = do txt <- await let txt' = T.scanl step c txt c' = T.last txt' yield (T.tail txt') go c' {-# INLINABLE scan #-} -- | @toCaseFold@, @toLower@, @toUpper@ and @stripStart@ are standard 'Text' utilities, -- here acting as 'Text' pipes, rather as they would on a lazy text toCaseFold :: Monad m => Pipe Text Text m r toCaseFold = P.map T.toCaseFold {-# INLINEABLE toCaseFold #-} -- | lowercase incoming 'Text' toLower :: Monad m => Pipe Text Text m r toLower = P.map T.toLower {-# INLINEABLE toLower #-} -- | uppercase incoming 'Text' toUpper :: Monad m => Pipe Text Text m r toUpper = P.map T.toUpper {-# INLINEABLE toUpper #-} -- | Remove leading white space from an incoming succession of 'Text's stripStart :: Monad m => Pipe Text Text m r stripStart = do chunk <- await let text = T.stripStart chunk if T.null text then stripStart else do yield text cat {-# INLINEABLE stripStart #-} {-| Fold a pure 'Producer' of strict 'Text's into a lazy 'TL.Text' -} toLazy :: Producer Text Identity () -> TL.Text toLazy = TL.fromChunks . P.toList {-# INLINABLE toLazy #-} {-| Fold an effectful 'Producer' of strict 'Text's into a lazy 'TL.Text' Note: 'toLazyM' is not an idiomatic use of @pipes@, but I provide it for simple testing purposes. Idiomatic @pipes@ style consumes the chunks immediately as they are generated instead of loading them all into memory. -} toLazyM :: (Monad m) => Producer Text m () -> m TL.Text toLazyM = liftM TL.fromChunks . P.toListM {-# INLINABLE toLazyM #-} -- | Reduce the text stream using a strict left fold over characters foldChars :: Monad m => (x -> Char -> x) -> x -> (x -> r) -> Producer Text m () -> m r foldChars step begin done = P.fold (T.foldl' step) begin done {-# INLINABLE foldChars #-} -- | Retrieve the first 'Char' head :: (Monad m) => Producer Text m () -> m (Maybe Char) head = go where go p = do x <- nextChar p case x of Left _ -> return Nothing Right (c, _) -> return (Just c) {-# INLINABLE head #-} -- | Retrieve the last 'Char' last :: (Monad m) => Producer Text m () -> m (Maybe Char) last = go Nothing where go r p = do x <- next p case x of Left () -> return r Right (txt, p') -> if (T.null txt) then go r p' else go (Just $ T.last txt) p' {-# INLINABLE last #-} -- | Determine if the stream is empty null :: (Monad m) => Producer Text m () -> m Bool null = P.all T.null {-# INLINABLE null #-} -- | Count the number of characters in the stream length :: (Monad m, Num n) => Producer Text m () -> m n length = P.fold (\n txt -> n + fromIntegral (T.length txt)) 0 id {-# INLINABLE length #-} -- | Fold that returns whether 'M.Any' received 'Char's satisfy the predicate any :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool any predicate = P.any (T.any predicate) {-# INLINABLE any #-} -- | Fold that returns whether 'M.All' received 'Char's satisfy the predicate all :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool all predicate = P.all (T.all predicate) {-# INLINABLE all #-} -- | Return the maximum 'Char' within a text stream maximum :: (Monad m) => Producer Text m () -> m (Maybe Char) maximum = P.fold step Nothing id where step mc txt = if (T.null txt) then mc else Just $ case mc of Nothing -> T.maximum txt Just c -> max c (T.maximum txt) {-# INLINABLE maximum #-} -- | Return the minimum 'Char' within a text stream (surely very useful!) minimum :: (Monad m) => Producer Text m () -> m (Maybe Char) minimum = P.fold step Nothing id where step mc txt = if (T.null txt) then mc else case mc of Nothing -> Just (T.minimum txt) Just c -> Just (min c (T.minimum txt)) {-# INLINABLE minimum #-} -- | Find the first element in the stream that matches the predicate find :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m (Maybe Char) find predicate p = head (p >-> filter predicate) {-# INLINABLE find #-} -- | Index into a text stream index :: (Monad m, Integral a) => a-> Producer Text m () -> m (Maybe Char) index n p = head (drop n p) {-# INLINABLE index #-} -- | Consume the first character from a stream of 'Text' -- -- 'next' either fails with a 'Left' if the 'Producer' has no more characters or -- succeeds with a 'Right' providing the next character and the remainder of the -- 'Producer'. nextChar :: (Monad m) => Producer Text m r -> m (Either r (Char, Producer Text m r)) nextChar = go where go p = do x <- next p case x of Left r -> return (Left r) Right (txt, p') -> case (T.uncons txt) of Nothing -> go p' Just (c, txt') -> return (Right (c, yield txt' >> p')) {-# INLINABLE nextChar #-} -- | Draw one 'Char' from a stream of 'Text', returning 'Left' if the 'Producer' is empty drawChar :: (Monad m) => Parser Text m (Maybe Char) drawChar = do x <- PP.draw case x of Nothing -> return Nothing Just txt -> case (T.uncons txt) of Nothing -> drawChar Just (c, txt') -> do PP.unDraw txt' return (Just c) {-# INLINABLE drawChar #-} -- | Push back a 'Char' onto the underlying 'Producer' unDrawChar :: (Monad m) => Char -> Parser Text m () unDrawChar c = modify (yield (T.singleton c) >>) {-# INLINABLE unDrawChar #-} {-| 'peekChar' checks the first 'Char' in the stream, but uses 'unDrawChar' to push the 'Char' back > peekChar = do > x <- drawChar > case x of > Left _ -> return () > Right c -> unDrawChar c > return x -} peekChar :: (Monad m) => Parser Text m (Maybe Char) peekChar = do x <- drawChar case x of Nothing -> return () Just c -> unDrawChar c return x {-# INLINABLE peekChar #-} {-| Check if the underlying 'Producer' has no more characters Note that this will skip over empty 'Text' chunks, unlike 'PP.isEndOfInput' from @pipes-parse@, which would consider an empty 'Text' a valid bit of input. > isEndOfChars = liftM isLeft peekChar -} isEndOfChars :: (Monad m) => Parser Text m Bool isEndOfChars = do x <- peekChar return (case x of Nothing -> True Just _-> False ) {-# INLINABLE isEndOfChars #-} -- | Splits a 'Producer' after the given number of characters splitAt :: (Monad m, Integral n) => n -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) splitAt n0 k p0 = fmap join (k (go n0 p0)) where go 0 p = return p go n p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> do let len = fromIntegral (T.length txt) if (len <= n) then do yield txt go (n - len) p' else do let (prefix, suffix) = T.splitAt (fromIntegral n) txt yield prefix return (yield suffix >> p') {-# INLINABLE splitAt #-} -- | Split a text stream in two, producing the longest -- consecutive group of characters that satisfies the predicate -- and returning the rest span :: (Monad m) => (Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) span predicate k p0 = fmap join (k (go p0)) where go p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> do let (prefix, suffix) = T.span predicate txt if (T.null suffix) then do yield txt go p' else do yield prefix return (yield suffix >> p') {-# INLINABLE span #-} {-| Split a text stream in two, producing the longest consecutive group of characters that don't satisfy the predicate -} break :: (Monad m) => (Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) break predicate = span (not . predicate) {-# INLINABLE break #-} {-| Improper lens that splits after the first group of equivalent Chars, as defined by the given equivalence relation -} groupBy :: (Monad m) => (Char -> Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) groupBy equals k p0 = fmap join (k ((go p0))) where go p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> case T.uncons txt of Nothing -> go p' Just (c, _) -> (yield txt >> p') ^. span (equals c) {-# INLINABLE groupBy #-} -- | Improper lens that splits after the first succession of identical 'Char' s group :: Monad m => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) group = groupBy (==) {-# INLINABLE group #-} {-| Improper lens that splits a 'Producer' after the first word Unlike 'words', this does not drop leading whitespace -} word :: (Monad m) => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) word k p0 = fmap join (k (to p0)) where to p = do p' <- p^.span isSpace p'^.break isSpace {-# INLINABLE word #-} line :: (Monad m) => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) line = break (== '\n') {-# INLINABLE line #-} -- | @(drop n)@ drops the first @n@ characters drop :: (Monad m, Integral n) => n -> Producer Text m r -> Producer Text m r drop n p = do p' <- lift $ runEffect (for (p ^. splitAt n) discard) p' {-# INLINABLE drop #-} -- | Drop characters until they fail the predicate dropWhile :: (Monad m) => (Char -> Bool) -> Producer Text m r -> Producer Text m r dropWhile predicate p = do p' <- lift $ runEffect (for (p ^. span predicate) discard) p' {-# INLINABLE dropWhile #-} -- | Intersperse a 'Char' in between the characters of stream of 'Text' intersperse :: (Monad m) => Char -> Producer Text m r -> Producer Text m r intersperse c = go0 where go0 p = do x <- lift (next p) case x of Left r -> return r Right (txt, p') -> do yield (T.intersperse c txt) go1 p' go1 p = do x <- lift (next p) case x of Left r -> return r Right (txt, p') -> do yield (T.singleton c) yield (T.intersperse c txt) go1 p' {-# INLINABLE intersperse #-} -- | Improper lens from unpacked 'Word8's to packaged 'ByteString's pack :: Monad m => Lens' (Producer Char m r) (Producer Text m r) pack k p = fmap _unpack (k (_pack p)) {-# INLINABLE pack #-} -- | Improper lens from packed 'ByteString's to unpacked 'Word8's unpack :: Monad m => Lens' (Producer Text m r) (Producer Char m r) unpack k p = fmap _pack (k (_unpack p)) {-# INLINABLE unpack #-} _pack :: Monad m => Producer Char m r -> Producer Text m r _pack p = folds step id done (p^.PG.chunksOf defaultChunkSize) where step diffAs w8 = diffAs . (w8:) done diffAs = T.pack (diffAs []) {-# INLINABLE _pack #-} _unpack :: Monad m => Producer Text m r -> Producer Char m r _unpack p = for p (each . T.unpack) {-# INLINABLE _unpack #-} defaultChunkSize :: Int defaultChunkSize = 16384 - (sizeOf (undefined :: Int) `shiftL` 1) -- | Split a text stream into 'FreeT'-delimited text streams of fixed size chunksOf :: (Monad m, Integral n) => n -> Lens' (Producer Text m r) (FreeT (Producer Text m) m r) chunksOf n k p0 = fmap concats (k (FreeT (go p0))) where go p = do x <- next p return $ case x of Left r -> Pure r Right (txt, p') -> Free $ do p'' <- (yield txt >> p') ^. splitAt n return $ FreeT (go p'') {-# INLINABLE chunksOf #-} {-| Split a text stream into sub-streams delimited by characters that satisfy the predicate -} splitsWith :: (Monad m) => (Char -> Bool) -> Producer Text m r -> FreeT (Producer Text m) m r splitsWith predicate p0 = FreeT (go0 p0) where go0 p = do x <- next p case x of Left r -> return (Pure r) Right (txt, p') -> if (T.null txt) then go0 p' else return $ Free $ do p'' <- (yield txt >> p') ^. span (not . predicate) return $ FreeT (go1 p'') go1 p = do x <- nextChar p return $ case x of Left r -> Pure r Right (_, p') -> Free $ do p'' <- p' ^. span (not . predicate) return $ FreeT (go1 p'') {-# INLINABLE splitsWith #-} -- | Split a text stream using the given 'Char' as the delimiter splits :: (Monad m) => Char -> Lens' (Producer Text m r) (FreeT (Producer Text m) m r) splits c k p = fmap (intercalates (yield (T.singleton c))) (k (splitsWith (c ==) p)) {-# INLINABLE splits #-} {-| Isomorphism between a stream of 'Text' and groups of equivalent 'Char's , using the given equivalence relation -} groupsBy :: Monad m => (Char -> Char -> Bool) -> Lens' (Producer Text m x) (FreeT (Producer Text m) m x) groupsBy equals k p0 = fmap concats (k (FreeT (go p0))) where go p = do x <- next p case x of Left r -> return (Pure r) Right (bs, p') -> case T.uncons bs of Nothing -> go p' Just (c, _) -> do return $ Free $ do p'' <- (yield bs >> p')^.span (equals c) return $ FreeT (go p'') {-# INLINABLE groupsBy #-} -- | Like 'groupsBy', where the equality predicate is ('==') groups :: Monad m => Lens' (Producer Text m x) (FreeT (Producer Text m) m x) groups = groupsBy (==) {-# INLINABLE groups #-} {-| Split a text stream into 'FreeT'-delimited lines -} lines :: (Monad m) => Lens' (Producer Text m r) (FreeT (Producer Text m) m r) lines k p = fmap _unlines (k (_lines p)) {-# INLINABLE lines #-} unlines :: Monad m => Lens' (FreeT (Producer Text m) m r) (Producer Text m r) unlines k p = fmap _lines (k (_unlines p)) {-# INLINABLE unlines #-} _lines :: Monad m => Producer Text m r -> FreeT (Producer Text m) m r _lines p0 = FreeT (go0 p0) where go0 p = do x <- next p case x of Left r -> return (Pure r) Right (txt, p') -> if (T.null txt) then go0 p' else return $ Free $ go1 (yield txt >> p') go1 p = do p' <- p ^. break ('\n' ==) return $ FreeT $ do x <- nextChar p' case x of Left r -> return $ Pure r Right (_, p'') -> go0 p'' {-# INLINABLE _lines #-} _unlines :: Monad m => FreeT (Producer Text m) m r -> Producer Text m r _unlines = concats . maps (<* yield (T.singleton '\n')) {-# INLINABLE _unlines #-} -- | Split a text stream into 'FreeT'-delimited words. Note that -- roundtripping with e.g. @over words id@ eliminates extra space -- characters as with @Prelude.unwords . Prelude.words@ words :: (Monad m) => Lens' (Producer Text m r) (FreeT (Producer Text m) m r) words k p = fmap _unwords (k (_words p)) {-# INLINABLE words #-} unwords :: Monad m => Lens' (FreeT (Producer Text m) m r) (Producer Text m r) unwords k p = fmap _words (k (_unwords p)) {-# INLINABLE unwords #-} _words :: (Monad m) => Producer Text m r -> FreeT (Producer Text m) m r _words p = FreeT $ do x <- next (dropWhile isSpace p) return $ case x of Left r -> Pure r Right (bs, p') -> Free $ do p'' <- (yield bs >> p') ^. break isSpace return (_words p'') {-# INLINABLE _words #-} _unwords :: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r _unwords = intercalates (yield $ T.singleton ' ') {-# INLINABLE _unwords #-} {-| 'intercalate' concatenates the 'FreeT'-delimited text streams after interspersing a text stream in between them -} intercalate :: (Monad m) => Producer Text m () -> FreeT (Producer Text m) m r -> Producer Text m r intercalate p0 = go0 where go0 f = do x <- lift (runFreeT f) case x of Pure r -> return r Free p -> do f' <- p go1 f' go1 f = do x <- lift (runFreeT f) case x of Pure r -> return r Free p -> do p0 f' <- p go1 f' {-# INLINABLE intercalate #-} {- $reexports @Data.Text@ re-exports the 'Text' type. @Pipes.Parse@ re-exports 'input', 'concat', 'FreeT' (the type) and the 'Parse' synonym. -} type Lens' a b = forall f . Functor f => (b -> f b) -> (a -> f a)