{-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UnicodeSyntax #-} ----------------------------------------------------------------------------- -- | -- Module : Graphics.Rendering.Plot.Render.Plot.Data -- Copyright : (c) A. V. H. McPhail 2010 -- License : BSD3 -- -- Maintainer : haskell.vivian.mcphail gmail com -- Stability : provisional -- Portability : portable -- -- Rendering 'Figure's -- ----------------------------------------------------------------------------- module Graphics.Rendering.Plot.Render.Plot.Data ( -- * Rendering renderData ) where ----------------------------------------------------------------------------- import Data.List(partition) --import Prelude.Unicode --import Foreign.Storable --import Foreign.Ptr --import Data.Packed.Vector --import Data.Packed.Matrix --import Data.Packed() import Numeric.LinearAlgebra import qualified Data.Array.IArray as A --import qualified Data.Array.MArray as M import qualified Data.Array.Base as B import Data.Word import qualified Graphics.Rendering.Cairo as C import qualified Graphics.Rendering.Cairo.Matrix as CM import Control.Monad.Reader import Control.Monad.State import Control.Monad.Maybe import Graphics.Rendering.Plot.Types import Graphics.Rendering.Plot.Render.Types import Graphics.Rendering.Plot.Render.Plot.Format import Graphics.Rendering.Plot.Render.Plot.Glyph --import Graphics.Rendering.Plot.Render.Plot.Annotation import Prelude hiding(min,max,abs) import qualified Prelude ----------------------------------------------------------------------------- findMinIdx, findMaxIdx :: Vector Double -> Double -> Int -> Int -> Int findMinIdx v x n max | n >= max = error "findMinIdx: data not in range" | v @> n >= x = n | otherwise = findMinIdx v x (n+1) max findMaxIdx v x n min | n < 0 = error "findMaxIdx: data not in range" | v @> n <= x = n | otherwise = findMaxIdx v x (n-1) min ----------------------------------------------------------------------------- greySurfaceFromMatrix :: C.SurfaceData Int Word8 -> Surface -> Int -> Int -> Int -> IO () greySurfaceFromMatrix s m stride r' c' = do let r = rows m c = cols m let fm = flatten m mx = maxElement m mn = minElement m mapM_ (\ri -> mapM_ (\(rj,ci) -> do let mi = ((rj `div` r')*c) + (ci `div` c') let e = round . (* 255) . (/ (mx-mn)) . (\x -> x - mn) $ (fm @> mi) let si = (rj*stride) + ci B.unsafeWrite s si e) $ zip (repeat ri) [0..((c*c')-1)]) [0..((r*r')-1)] ---------------------------------------------------------------------------- zeroToOne :: Double -> Double zeroToOne x | x == 0.0 = 1.0 | otherwise = x renderData :: Ranges -> DataSeries -> Render () renderData _ (DS_Surf m) = do (BoundingBox x y w h) <- get let r = rows m c = cols m cairo $ do C.save --C.setAntialias C.AntialiasNone let r'' = Prelude.min 4 ((round h) `div` r) c'' = Prelude.min 4 ((round w) `div` c) r' = if r'' < 1 then 1 else r'' c' = if c'' < 1 then 1 else c'' s <- liftIO $ C.createImageSurface C.FormatA8 (c*c') (r*r') p <- liftIO $ C.imageSurfaceGetPixels s C.surfaceFlush s stride <- liftIO $ C.imageSurfaceGetStride s liftIO $ greySurfaceFromMatrix p m stride r' c' C.surfaceMarkDirty s C.setSourceSurface s x y pa <- C.getSource pm <- liftIO $ C.patternGetMatrix pa let pm' = CM.scale ((fromIntegral (c*c'))/w) ((fromIntegral (r*r'))/h) pm liftIO $ C.patternSetMatrix pa pm' --C.patternSetFilter pa C.FilterBest C.rectangle x y w h --(fromIntegral c) (fromIntegral r) C.paint C.stroke C.restore return () renderData r ds = do let aos = case ds of (DS_Y os') -> zip (repeat AbsFunction) (A.elems os') (DS_1toN abs' os') -> zip (repeat abs') (A.elems os') (DS_1to1 aos') -> A.elems aos' _ -> error "renderData: DataSeries not handled" let (los,ups) = partition (\(_,DecSeries o _) -> isLower o) aos (BoundingBox x y w h) <- get let (xsc,xmin',xmax') = getRanges XAxis Lower r let (xmin,xmax) = if xsc == Log then (logBase 10 $ zeroToOne xmin',logBase 10 $ zeroToOne xmax') else (xmin',xmax') let xscale = w/(xmax-xmin) cairo $ C.save let (yscl,yminl',ymaxl') = getRanges YAxis Lower r let (yminl,ymaxl) = if yscl == Log then (logBase 10 $ zeroToOne yminl',logBase 10 $ zeroToOne ymaxl') else (yminl',ymaxl') let yscalel = h/(ymaxl-yminl) -- transform to data coordinates cairo $ do C.translate x (y+h) --C.scale xscale yscalel C.translate (-xmin*xscale) (yminl*yscalel) flipVertical mapM_ (renderSeries xsc yscl xmin xmax xscale yscalel) los cairo $ C.restore when (not $ null ups) (do cairo $ C.save let (yscu,yminu',ymaxu') = getRanges YAxis Upper r let (yminu,ymaxu) = if yscu == Log then (logBase 10 $ zeroToOne yminu',logBase 10 $ zeroToOne ymaxu') else (yminu',ymaxu') let yscaleu = h/(ymaxu-yminu) -- transform to data coordinates cairo $ do C.translate x (y+h) --C.scale xscale yscaleu C.translate (-xmin*xscale) (yminu*yscaleu) flipVertical mapM_ (renderSeries xsc yscu xmin xmax xscale yscaleu) ups cairo $ C.restore) -- could filter annotations as well return () renderSeries :: Scale -> Scale -> Double -> Double -> Double -> Double -> (Abscissae,DecoratedSeries) -> Render () renderSeries xsc ysc xmin xmax xscale yscale (abs,(DecSeries o d)) = do dat' <- case o of (OrdFunction _ f _) -> do (BoundingBox _ _ w _) <- get let t = linspace (round w) (xmin,xmax) return $ Left [((True,t),mapVector f t)] (OrdPoints _ (Plain o') _) -> do let t = case abs of AbsFunction -> if isHist d then (True,fromList [0.0..(fromIntegral $ dim o')]) else (True,fromList [1.0..(fromIntegral $ dim o')]) AbsPoints mi t' -> (mi,t') return $ Left [(t,o')] (OrdPoints _ (Error o' (l,h)) _) -> do let t = case abs of AbsFunction -> if isHist d then (True,fromList [0.0..(fromIntegral $ dim o')]) else (True,fromList [1.0..(fromIntegral $ dim o')]) AbsPoints mi t' -> (mi,t') return $ Left [(t,o'),(t,o'-l),(t,o'+h)] (OrdPoints _ (MinMax o' (Just (l,h))) _) -> do let t = case abs of AbsFunction -> (True,fromList [1.0..(fromIntegral $ dim l)]) AbsPoints mi t' -> (mi,t') return $ Right [((t,o'),(t,(l,h)))] let dat = case dat' of Left dat'' → map (\((m,a),b) -> Left (if xsc == Log then (m,logBase 10 a) else (m,a) ,if ysc == Log then (logBase 10 b) else b)) dat'' Right dat''' -> map (\(((m1,a),(bl,bu)),((m2,c),(dl,du))) → let (a',c') = if xsc == Log then (logBase 10 $ mapVector zeroToOne a,logBase 10 $ mapVector zeroToOne c) else (a,c) (bl',bu',dl',du') = if ysc == Log then (logBase 10 bl,logBase 10 bu,logBase 10 dl,logBase 10 du) else (bl,bu,dl,du) in Right (((m1,a'),(bl',bu')),((m2,c'),(dl',du')))) dat''' case d of (DecLine lt) -> do formatLineSeries lt mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing renderLineSample endLineSample t' y') (map (either id (error "MinMax data")) dat) (DecPoint pt) -> do (pz,g) <- formatPointSeries pt let gs = g : Bot : Top : [] mapM_ (\(g',(t',y')) -> renderSamples xscale yscale xmin xmax Nothing (renderPointSample pz g') endPointSample t' y') (zip gs (map (either id (error "MinMax data")) dat)) (DecLinPt lt pt) -> do formatLineSeries lt mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing renderLineSample endLineSample t' y') (map (either id (error "MinMax data")) dat) (pz,g) <- formatPointSeries pt let gs = g : Bot : Top : [] mapM_ (\(g',(t',y')) -> renderSamples xscale yscale xmin xmax Nothing (renderPointSample pz g') endPointSample t' y') (zip gs (map (either id (error "MinMax data")) dat)) (DecImpulse lt) -> do formatLineSeries lt mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing renderImpulseSample endImpulseSample t' y') (map (either id (error "MinMax data")) dat) (DecStep lt) -> do formatLineSeries lt mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing renderStepSample endStepSample t' y') (map (either id (error "MinMax data")) dat) (DecArea lt) -> do formatLineSeries lt let Left hd = head dat ln = dim $ snd $ fst hd xmin_ix = findMinIdx (snd $ fst hd) xmin 0 (ln-1) x0 = (snd $ fst hd) @> xmin_ix y0 = (snd hd) @> xmin_ix mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing renderAreaSample (endAreaSample x0 y0) t' y') (map (either id (error "MinMax data")) dat) (DecBar bt) -> do (bw,bc,c) <- formatBarSeries bt mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing (renderBarSample bw bc c) endBarSample t' y') (map (either id (error "MinMax data")) dat) (DecHist bt) -> do (bw,bc,c) <- formatBarSeries bt let Left hd = head dat ln = dim $ snd $ fst hd xmin_ix = findMinIdx (snd $ fst hd) xmin 0 (ln-1) rest (m,v) = (m,subVector 1 (dim v - 1) v) x0 = (snd $ fst hd) @> xmin_ix y0 = 0 mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax (Just $ C.moveTo x0 y0) (renderHistSample bw bc c) endHistSample (rest t') y') (map (either id (error "MinMax data")) dat) (DecCand bt) → do (bw,bc,c) ← formatBarSeries bt mapM_ (\((t',y'),(_,e')) → do renderMinMaxSamples xscale yscale xmin xmax Nothing (renderWhiskerSample bw bc c False) endWhiskerSample t' e' renderMinMaxSamples xscale yscale xmin xmax Nothing (renderCandleSample bw bc c) endCandleSample t' y' ) (map (either (error "Single data") id) dat) (DecWhisk bt) → do (bw,bc,c) ← formatBarSeries bt mapM_ (\((t',y'),(_,e')) → do renderMinMaxSamples xscale yscale xmin xmax Nothing (renderWhiskerSample bw bc c True) endWhiskerSample t' e' renderMinMaxSamples xscale yscale xmin xmax Nothing (renderCandleSample bw bc c) endCandleSample t' y' ) (map (either (error "Single data") id) dat) return () ----------------------------------------------------------------------------- renderSamples :: Double -> Double -> Double -> Double -> Maybe (C.Render ()) -> (Double -> Double -> Double -> Double -> C.Render ()) -> (Double -> Double -> C.Render ()) -> (Bool,Vector Double) -> Vector Double -> Render () renderSamples xscale yscale xmin xmax s f e (mono,t) y = do (BoundingBox _ _ w _) <- get let ln = dim t (xmin_ix,xmax_ix,num_pts) = if mono then (findMinIdx t xmin 0 (ln-1) ,findMaxIdx t xmax (ln-1) 0 ,xmax_ix - xmin_ix + 1) else (0,ln-1,ln) diff'' = floor $ (fromIntegral num_pts)/w diff' = if diff'' <= 1 then 1 else diff'' diff = if mono then diff' else 1 cairo $ do case s of Nothing -> C.moveTo ((t @> xmin_ix)*xscale) ((y @> xmin_ix)*yscale) Just s' -> s' _ <- runMaybeT $ do mapVectorWithIndexM_ (\i y' -> do when (i >= xmin_ix && i `mod` diff == 0) (renderSample i xmax_ix t (f xscale yscale) y') return ()) y (e xscale yscale) ----------------------------------------------------------------------------- renderMinMaxSamples :: Double -> Double -> Double -> Double -> Maybe (C.Render ()) -> (Double -> Double -> Double -> (Double,Double) -> C.Render ()) -> (Double -> Double -> C.Render ()) -> (Bool,Vector Double) -> (Vector Double,Vector Double) -> Render () renderMinMaxSamples xscale yscale xmin xmax s f e (mono,t) y = do (BoundingBox _ _ w _) <- get let ln = dim t (xmin_ix,xmax_ix,num_pts) = if mono then (findMinIdx t xmin 0 (ln-1) ,findMaxIdx t xmax (ln-1) 0 ,xmax_ix - xmin_ix + 1) else (0,ln-1,ln) diff'' = floor $ (fromIntegral num_pts)/w diff' = if diff'' <= 1 then 1 else diff'' diff = if mono then diff' else 1 cairo $ do case s of Nothing -> C.moveTo ((t @> xmin_ix)*xscale) (((fst $ y) @> xmin_ix)*yscale) Just s' -> s' _ <- runMaybeT $ mapVectorWithIndexM_ (\i t' -> do when (i >= xmin_ix && i `mod` diff == 0) (renderMinMaxSample i xmax_ix t' (f xscale yscale) (e xscale yscale) y) return ()) t return () ----------------------------------------------------------------------------- renderSample :: Int -> Int -> Vector Double -> (Double -> Double -> C.Render ()) -> Double -> MaybeT C.Render () renderSample ix xmax_ix t f y | ix >= xmax_ix = do lift $ f (t @> ix) y fail "end of bounded area" | otherwise = do lift $ f (t @> ix) y renderMinMaxSample :: Int -> Int -> Double -> (Double -> (Double,Double) -> C.Render ()) -> C.Render () -> (Vector Double,Vector Double) -> MaybeT C.Render () renderMinMaxSample ix xmax_ix t f e (yl,yu) | ix >= xmax_ix = do lift $ do f t (yl @> ix,yu @> ix) e fail "end of bounded area" | otherwise = do lift $ f t (yl @> ix,yu @> ix) ----------------------------------------------------------------------------- renderLineSample :: Double → Double -> Double -> Double -> C.Render () renderLineSample xscale yscale x y = C.lineTo (x*xscale) (y*yscale) endLineSample :: Double -> Double -> C.Render () endLineSample _ _ = C.stroke renderPointSample :: LineWidth -> Glyph -> Double -> Double -> Double -> Double -> C.Render () renderPointSample pz g xscale yscale x y = do C.moveTo (x*xscale) (y*yscale) renderGlyph pz g endPointSample :: Double -> Double -> C.Render () endPointSample _ _ = return () renderImpulseSample :: Double -> Double -> Double -> Double -> C.Render () renderImpulseSample xscale yscale x y = do let x' = x*xscale C.moveTo x' 0 C.lineTo x (y*yscale) C.stroke endImpulseSample :: Double -> Double -> C.Render () endImpulseSample _ _ = return () renderStepSample :: Double -> Double -> Double -> Double -> C.Render () renderStepSample xscale yscale x y = do (x',_) <- C.getCurrentPoint let y' = y*yscale C.lineTo x' y' C.lineTo (x*xscale) y' endStepSample :: Double -> Double -> C.Render () endStepSample _ _ = C.stroke renderAreaSample :: Double -> Double -> Double -> Double -> C.Render () renderAreaSample xscale yscale x y = C.lineTo (x*xscale) (y*yscale) endAreaSample :: Double -> Double -> Double -> Double -> C.Render () endAreaSample x0 _ xscale _ = do (x',_) <- C.getCurrentPoint let x0' = x0*xscale C.lineTo x' 0 C.lineTo x0' 0 -- C.lineTo x0 y0 C.closePath C.fill C.stroke renderBarSample :: Width -> Color -> Color -> Double -> Double -> Double -> Double -> C.Render () renderBarSample bw c bc xscale yscale x y = do setColour bc let bw' = bw*xscale C.rectangle ((x*xscale)-bw'/2) 0 bw' (y*yscale) C.strokePreserve setColour c C.fill endBarSample :: Double -> Double -> C.Render () endBarSample _ _ = return () renderHistSample :: Width -> Color -> Color -> Double -> Double -> Double -> Double -> C.Render () renderHistSample _ c bc xscale yscale x y = do (x',_) <- C.getCurrentPoint let x'' = x*xscale C.stroke setColour bc C.rectangle x' 0 (x''-x') (y*yscale) C.strokePreserve setColour c C.fill C.moveTo x'' 0 endHistSample :: Double -> Double -> C.Render () endHistSample _ _ = return () renderCandleSample :: Width -> Color -> Color -> Double -> Double -> Double -> (Double,Double) -> C.Render () renderCandleSample bw c bc xscale yscale x (yl,yu) = do setColour bc let (yl',yu') = (yl*yscale,yu*yscale) bw' = bw*xscale C.rectangle ((x*xscale)-bw'/2) yl' bw' (yu'-yl') C.strokePreserve --liftIO $ putStrLn $ (show yl') ++ " " ++ (show yu') if (yl < yu) then do setColour c else do C.setSourceRGBA 1 1 1 1 C.fill endCandleSample :: Double -> Double -> C.Render () endCandleSample _ _ = return () renderWhiskerSample :: Width -> Color -> Color → Bool -> Double -> Double -> Double -> (Double,Double) -> C.Render () renderWhiskerSample bw _ bc whiskers x xscale yscale (yl,yu) = do setColour bc let (x',yl',yu') = (x*xscale,yl*yscale,yu*yscale) bw' = bw*xscale C.moveTo x' yl' C.lineTo x' yu' if whiskers then do C.moveTo (x'-bw'/2) yu' C.lineTo (x'+bw'/2) yu' C.moveTo (x'-bw'/2) yl' C.lineTo (x'+bw'/2) yl' else return () C.stroke endWhiskerSample :: Double -> Double -> C.Render () endWhiskerSample _ _ = return () -----------------------------------------------------------------------------