{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE ScopedTypeVariables #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Dense ( testSuite ) where import Prelude hiding (gcd, quotRem, rem) #if MIN_VERSION_semirings(0,4,2) import Data.Euclidean (Euclidean(..), GcdDomain(..)) #endif import Data.Int import Data.Maybe import Data.Poly import qualified Data.Poly.Semiring as S import Data.Proxy import Data.Semiring (Semiring) import qualified Data.Vector as V import qualified Data.Vector.Generic as G import qualified Data.Vector.Unboxed as U import Test.Tasty import Test.Tasty.QuickCheck hiding (scale, numTests) import Test.QuickCheck.Classes import Quaternion instance (Eq a, Semiring a, Arbitrary a, G.Vector v a) => Arbitrary (Poly v a) where arbitrary = S.toPoly . G.fromList <$> arbitrary shrink = fmap (S.toPoly . G.fromList) . shrink . G.toList . unPoly #if MIN_VERSION_semirings(0,4,2) instance (Eq a, Semiring a, Arbitrary a, G.Vector v a) => Arbitrary (PolyOverField (Poly v a)) where arbitrary = PolyOverField . S.toPoly . G.fromList . (\xs -> take (length xs `mod` 10) xs) <$> arbitrary shrink = fmap (PolyOverField . S.toPoly . G.fromList) . shrink . G.toList . unPoly . unPolyOverField #endif newtype ShortPoly a = ShortPoly { unShortPoly :: a } deriving ( Eq , Show , Semiring #if MIN_VERSION_semirings(0,4,2) , GcdDomain , Euclidean #endif ) instance (Eq a, Semiring a, Arbitrary a, G.Vector v a) => Arbitrary (ShortPoly (Poly v a)) where arbitrary = ShortPoly . S.toPoly . G.fromList . (\xs -> take (length xs `mod` 10) xs) <$> arbitrary shrink = fmap (ShortPoly . S.toPoly . G.fromList) . shrink . G.toList . unPoly . unShortPoly testSuite :: TestTree testSuite = testGroup "Dense" [ arithmeticTests , otherTests , lawsTests , evalTests , derivTests #if MIN_VERSION_semirings(0,4,2) , gcdExtTests #endif ] lawsTests :: TestTree lawsTests = testGroup "Laws" [ semiringTests , ringTests , numTests , euclideanTests , isListTests , showTests ] semiringTests :: TestTree semiringTests = testGroup "Semiring" $ map (uncurry testProperty) $ concatMap lawsProperties [ semiringLaws (Proxy :: Proxy (Poly U.Vector ())) , semiringLaws (Proxy :: Proxy (Poly U.Vector Int8)) , semiringLaws (Proxy :: Proxy (Poly V.Vector Integer)) , semiringLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) ] ringTests :: TestTree ringTests = testGroup "Ring" $ map (uncurry testProperty) $ concatMap lawsProperties [ #if MIN_VERSION_quickcheck_classes(0,6,1) ringLaws (Proxy :: Proxy (Poly U.Vector ())) , ringLaws (Proxy :: Proxy (Poly U.Vector Int8)) , ringLaws (Proxy :: Proxy (Poly V.Vector Integer)) , ringLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) #endif ] numTests :: TestTree numTests = testGroup "Num" $ map (uncurry testProperty) $ concatMap lawsProperties [ #if MIN_VERSION_quickcheck_classes(0,6,3) numLaws (Proxy :: Proxy (Poly U.Vector Int8)) , numLaws (Proxy :: Proxy (Poly V.Vector Integer)) , numLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) #endif ] euclideanTests :: TestTree euclideanTests = testGroup "Euclidean" $ map (uncurry testProperty) $ concatMap lawsProperties [ #if MIN_VERSION_semirings(0,4,2) && MIN_VERSION_quickcheck_classes(0,6,3) gcdDomainLaws (Proxy :: Proxy (ShortPoly (Poly V.Vector Integer))) , gcdDomainLaws (Proxy :: Proxy (PolyOverField (Poly V.Vector Rational))) , euclideanLaws (Proxy :: Proxy (ShortPoly (Poly V.Vector Rational))) #endif ] isListTests :: TestTree isListTests = testGroup "IsList" $ map (uncurry testProperty) $ concatMap lawsProperties [ isListLaws (Proxy :: Proxy (Poly U.Vector ())) , isListLaws (Proxy :: Proxy (Poly U.Vector Int8)) , isListLaws (Proxy :: Proxy (Poly V.Vector Integer)) , isListLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) ] showTests :: TestTree showTests = testGroup "Show" $ map (uncurry testProperty) $ concatMap lawsProperties [ #if MIN_VERSION_quickcheck_classes(0,6,0) showLaws (Proxy :: Proxy (Poly U.Vector ())) , showLaws (Proxy :: Proxy (Poly U.Vector Int8)) , showLaws (Proxy :: Proxy (Poly V.Vector Integer)) , showLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) #endif ] arithmeticTests :: TestTree arithmeticTests = testGroup "Arithmetic" [ testProperty "addition matches reference" $ \(xs :: [Int]) ys -> toPoly (V.fromList (addRef xs ys)) === toPoly (V.fromList xs) + toPoly (V.fromList ys) , testProperty "subtraction matches reference" $ \(xs :: [Int]) ys -> toPoly (V.fromList (subRef xs ys)) === toPoly (V.fromList xs) - toPoly (V.fromList ys) , testProperty "multiplication matches reference" $ \(xs :: [Int]) ys -> toPoly (V.fromList (mulRef xs ys)) === toPoly (V.fromList xs) * toPoly (V.fromList ys) ] addRef :: Num a => [a] -> [a] -> [a] addRef [] ys = ys addRef xs [] = xs addRef (x : xs) (y : ys) = (x + y) : addRef xs ys subRef :: Num a => [a] -> [a] -> [a] subRef [] ys = map negate ys subRef xs [] = xs subRef (x : xs) (y : ys) = (x - y) : subRef xs ys mulRef :: Num a => [a] -> [a] -> [a] mulRef xs ys = foldl addRef [] $ zipWith (\x zs -> map (* x) zs) xs $ iterate (0 :) ys otherTests :: TestTree otherTests = testGroup "other" $ concat [ otherTestGroup (Proxy :: Proxy Int8) , otherTestGroup (Proxy :: Proxy (Quaternion Int)) ] otherTestGroup :: forall a. (Eq a, Show a, Semiring a, Num a, Arbitrary a, U.Unbox a, G.Vector U.Vector a) => Proxy a -> [TestTree] otherTestGroup _ = [ testProperty "leading p 0 == Nothing" $ \p -> leading (monomial p 0 :: UPoly a) === Nothing , testProperty "leading . monomial = id" $ \p c -> c /= 0 ==> leading (monomial p c :: UPoly a) === Just (p, c) , testProperty "monomial matches reference" $ \p (c :: a) -> monomial p c === toPoly (V.fromList (monomialRef p c)) , testProperty "scale matches multiplication by monomial" $ \p c (xs :: UPoly a) -> scale p c xs === monomial p c * xs ] monomialRef :: Num a => Word -> a -> [a] monomialRef p c = replicate (fromIntegral p) 0 ++ [c] evalTests :: TestTree evalTests = testGroup "eval" $ concat [ evalTestGroup (Proxy :: Proxy (Poly U.Vector Int8)) , evalTestGroup (Proxy :: Proxy (Poly V.Vector Integer)) , substTestGroup (Proxy :: Proxy (Poly U.Vector Int8)) ] evalTestGroup :: forall v a. (Eq a, Num a, Semiring a, Arbitrary a, Show a, Eq (v a), Show (v a), G.Vector v a) => Proxy (Poly v a) -> [TestTree] evalTestGroup _ = [ testProperty "eval (p + q) r = eval p r + eval q r" $ \p q r -> e (p + q) r === e p r + e q r , testProperty "eval (p * q) r = eval p r * eval q r" $ \p q r -> e (p * q) r === e p r * e q r , testProperty "eval x p = p" $ \p -> e X p === p , testProperty "eval (monomial 0 c) p = c" $ \c p -> e (monomial 0 c) p === c , testProperty "eval' (p + q) r = eval' p r + eval' q r" $ \p q r -> e' (p + q) r === e' p r + e' q r , testProperty "eval' (p * q) r = eval' p r * eval' q r" $ \p q r -> e' (p * q) r === e' p r * e' q r , testProperty "eval' x p = p" $ \p -> e' S.X p === p , testProperty "eval' (S.monomial 0 c) p = c" $ \c p -> e' (S.monomial 0 c) p === c ] where e :: Poly v a -> a -> a e = eval e' :: Poly v a -> a -> a e' = S.eval substTestGroup :: forall v a. (Eq a, Num a, Semiring a, Arbitrary a, Show a, Eq (v a), Show (v a), G.Vector v a) => Proxy (Poly v a) -> [TestTree] substTestGroup _ = [ testProperty "subst (p + q) r = subst p r + subst q r" $ \p q r -> e (p + q) r === e p r + e q r , testProperty "subst x p = p" $ \p -> e X p === p , testProperty "subst (monomial 0 c) p = monomial 0 c" $ \c p -> e (monomial 0 c) p === monomial 0 c , testProperty "subst' (p + q) r = subst' p r + subst' q r" $ \p q r -> e' (p + q) r === e' p r + e' q r , testProperty "subst' x p = p" $ \p -> e' S.X p === p , testProperty "subst' (S.monomial 0 c) p = S.monomial 0 c" $ \c p -> e' (S.monomial 0 c) p === S.monomial 0 c ] where e :: Poly v a -> Poly v a -> Poly v a e = subst e' :: Poly v a -> Poly v a -> Poly v a e' = S.subst derivTests :: TestTree derivTests = testGroup "deriv" [ testProperty "deriv = S.deriv" $ \(p :: Poly V.Vector Integer) -> deriv p === S.deriv p #if MIN_VERSION_semirings(0,5,0) , testProperty "integral = S.integral" $ \(p :: Poly V.Vector Rational) -> integral p === S.integral p #endif , testProperty "deriv . integral = id" $ \(p :: Poly V.Vector Rational) -> deriv (integral p) === p , testProperty "deriv c = 0" $ \c -> deriv (monomial 0 c :: Poly V.Vector Int) === 0 , testProperty "deriv cX = c" $ \c -> deriv (monomial 0 c * X :: Poly V.Vector Int) === monomial 0 c , testProperty "deriv (p + q) = deriv p + deriv q" $ \p q -> deriv (p + q) === (deriv p + deriv q :: Poly V.Vector Int) , testProperty "deriv (p * q) = p * deriv q + q * deriv p" $ \p q -> deriv (p * q) === (p * deriv q + q * deriv p :: Poly V.Vector Int) , testProperty "deriv (subst p q) = deriv q * subst (deriv p) q" $ \(p :: Poly V.Vector Int) (q :: Poly U.Vector Int) -> deriv (subst p q) === deriv q * subst (deriv p) q ] #if MIN_VERSION_semirings(0,4,2) gcdExtTests :: TestTree gcdExtTests = localOption (QuickCheckMaxSize 12) $ testGroup "gcdExt" [ testProperty "gcdExt == S.gcdExt" $ \(a :: Poly V.Vector Rational) b -> gcdExt a b === S.gcdExt a b , testProperty "g == as (mod b) for gcdExt" $ \(a :: Poly V.Vector Rational) b -> b /= 0 ==> uncurry ((. flip rem b) . (===) . flip rem b) ((* a) <$> gcdExt a b) , testProperty "fst . gcdExt == gcd (mod units)" $ \(a :: Poly V.Vector Rational) b -> fst (gcdExt a b) `sameUpToUnits` gcd a b ] sameUpToUnits :: (Eq a, GcdDomain a) => a -> a -> Bool sameUpToUnits x y = x == y || isJust (x `divide` y) && isJust (y `divide` x) #endif