{-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE UndecidableInstances #-} module SparseLaurent ( testSuite ) where import Prelude hiding (gcd, quotRem, quot, rem) import Control.Exception import Data.Euclidean (GcdDomain(..), Field) import Data.Int import qualified Data.Poly.Sparse import Data.Poly.Sparse.Laurent import Data.Proxy import Data.Semiring (Semiring(..)) import qualified Data.Vector.Generic as G import qualified Data.Vector.Unboxed as U import qualified Data.Vector.Unboxed.Sized as SU import Test.Tasty import Test.Tasty.QuickCheck hiding (scale, numTests) import Quaternion import TestUtils testSuite :: TestTree testSuite = testGroup "SparseLaurent" [ otherTests , divideByZeroTests , lawsTests , evalTests , derivTests , patternTests ] lawsTests :: TestTree lawsTests = testGroup "Laws" $ semiringTests ++ ringTests ++ numTests ++ gcdDomainTests ++ isListTests ++ showTests semiringTests :: [TestTree] #ifdef MIN_VERSION_quickcheck_classes semiringTests = [ mySemiringLaws (Proxy :: Proxy (ULaurent ())) , mySemiringLaws (Proxy :: Proxy (ULaurent Int8)) , mySemiringLaws (Proxy :: Proxy (VLaurent Integer)) , tenTimesLess $ mySemiringLaws (Proxy :: Proxy (ULaurent (Quaternion Int))) ] #else semiringTests = [] #endif ringTests :: [TestTree] #ifdef MIN_VERSION_quickcheck_classes ringTests = [ myRingLaws (Proxy :: Proxy (ULaurent ())) , myRingLaws (Proxy :: Proxy (ULaurent Int8)) , myRingLaws (Proxy :: Proxy (VLaurent Integer)) , myRingLaws (Proxy :: Proxy (ULaurent (Quaternion Int))) ] #else ringTests = [] #endif numTests :: [TestTree] numTests = [ myNumLaws (Proxy :: Proxy (ULaurent Int8)) , myNumLaws (Proxy :: Proxy (VLaurent Integer)) , tenTimesLess $ myNumLaws (Proxy :: Proxy (ULaurent (Quaternion Int))) ] gcdDomainTests :: [TestTree] #ifdef MIN_VERSION_quickcheck_classes gcdDomainTests = [ myGcdDomainLaws (Proxy :: Proxy (ShortPoly (VLaurent Integer))) , tenTimesLess $ myGcdDomainLaws (Proxy :: Proxy (ShortPoly (VLaurent Rational))) ] #else gcdDomainTests = [] #endif isListTests :: [TestTree] isListTests = [ myIsListLaws (Proxy :: Proxy (ULaurent ())) , myIsListLaws (Proxy :: Proxy (ULaurent Int8)) , myIsListLaws (Proxy :: Proxy (VLaurent Integer)) , tenTimesLess $ myIsListLaws (Proxy :: Proxy (ULaurent (Quaternion Int))) ] showTests :: [TestTree] showTests = [ myShowLaws (Proxy :: Proxy (ULaurent ())) , myShowLaws (Proxy :: Proxy (ULaurent Int8)) , myShowLaws (Proxy :: Proxy (VLaurent Integer)) , tenTimesLess $ myShowLaws (Proxy :: Proxy (ULaurent (Quaternion Int))) ] otherTests :: TestTree otherTests = testGroup "other" $ concat [ otherTestGroup (Proxy :: Proxy Int8) , otherTestGroup (Proxy :: Proxy (Quaternion Int)) ] otherTestGroup :: forall a. (Eq a, Show a, Semiring a, Num a, Arbitrary a, U.Unbox a, G.Vector U.Vector a) => Proxy a -> [TestTree] otherTestGroup _ = [ testProperty "leading p 0 == Nothing" $ \p -> leading (monomial p 0 :: ULaurent a) === Nothing , testProperty "leading . monomial = id" $ \p c -> c /= 0 ==> leading (monomial p c :: ULaurent a) === Just (p, c) , tenTimesLess $ testProperty "scale matches multiplication by monomial" $ \p c (xs :: ULaurent a) -> scale p c xs === monomial p c * xs , tenTimesLess $ testProperty "toLaurent . unLaurent" $ \(xs :: ULaurent a) -> uncurry toLaurent (unLaurent xs) === xs ] divideByZeroTests :: TestTree divideByZeroTests = testGroup "divideByZero" [ testProperty "divide" $ testProp divide ] where testProp f xs = ioProperty ((== Left DivideByZero) <$> try (evaluate (xs `f` (0 :: VLaurent Rational)))) evalTests :: TestTree evalTests = testGroup "eval" $ concat [ evalTestGroup (Proxy :: Proxy (VLaurent Rational)) , substTestGroup (Proxy :: Proxy (ULaurent Int8)) ] evalTestGroup :: forall v a. (Eq a, Field a, Arbitrary a, Show a, Eq (v (Word, a)), Show (v (Word, a)), G.Vector v (Word, a), G.Vector v (SU.Vector 1 Word, a)) => Proxy (Laurent v a) -> [TestTree] evalTestGroup _ = [ testProperty "eval (p + q) r = eval p r + eval q r" $ \(ShortPoly p) (ShortPoly q) r -> e (p `plus` q) r === e p r `plus` e q r , testProperty "eval (p * q) r = eval p r * eval q r" $ \(ShortPoly p) (ShortPoly q) r -> e (p `times` q) r === e p r `times` e q r , testProperty "eval x p = p" $ \p -> e X p === p , testProperty "eval (monomial 0 c) p = c" $ \c p -> e (monomial 0 c) p === c ] where e :: Laurent v a -> a -> a e = eval substTestGroup :: forall v a. (Eq a, Num a, Semiring a, Arbitrary a, Show a, Eq (v (SU.Vector 1 Word, a)), Show (v (Word, a)), G.Vector v (Word, a), G.Vector v (SU.Vector 1 Word, a)) => Proxy (Laurent v a) -> [TestTree] substTestGroup _ = [ testProperty "subst x p = p" $ \p -> e Data.Poly.Sparse.X p === p , testProperty "subst (monomial 0 c) p = monomial 0 c" $ \c p -> e (Data.Poly.Sparse.monomial 0 c) p === monomial 0 c ] where e :: Data.Poly.Sparse.Poly v a -> Laurent v a -> Laurent v a e = subst derivTests :: TestTree derivTests = testGroup "deriv" [ testProperty "deriv c = 0" $ \c -> deriv (monomial 0 c :: ULaurent Int) === 0 , testProperty "deriv cX = c" $ \c -> deriv (monomial 0 c * X :: ULaurent Int) === monomial 0 c , testProperty "deriv (p + q) = deriv p + deriv q" $ \p q -> deriv (p + q) === (deriv p + deriv q :: ULaurent Int) , testProperty "deriv (p * q) = p * deriv q + q * deriv p" $ \p q -> deriv (p * q) === (p * deriv q + q * deriv p :: ULaurent Int) ] patternTests :: TestTree patternTests = testGroup "pattern" [ testProperty "X :: ULaurent Int" $ once $ case (monomial 1 1 :: ULaurent Int) of X -> True; _ -> False , testProperty "X :: ULaurent Int" $ once $ (X :: ULaurent Int) === monomial 1 1 , testProperty "X :: ULaurent ()" $ once $ case (zero :: ULaurent ()) of X -> True; _ -> False , testProperty "X :: ULaurent ()" $ once $ (X :: ULaurent ()) === zero , testProperty "X^-k" $ \(NonNegative j) k -> ((X^j)^-k :: ULaurent Int) === monomial (- j * k) 1 , testProperty "^-" $ \(p :: ULaurent Int) (NonNegative k) -> ioProperty $ do et <- try (evaluate (p^-k)) :: IO (Either PatternMatchFail (ULaurent Int)) pure $ case et of Left{} -> True Right t -> p^k * t == one ]