{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MonoLocalBinds #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -fno-warn-orphans #-} {-# OPTIONS_HADDOCK not-home #-} module Polysemy.Internal ( Sem (..) , Member , MemberWithError , Members , send , sendUsing , embed , run , runM , raise_ , Raise (..) , raise , raiseUnder , raiseUnder2 , raiseUnder3 , raise2Under , raise3Under , subsume_ , Subsume (..) , subsume , subsumeUsing , insertAt , Embed (..) , usingSem , liftSem , hoistSem , Append , InterpreterFor , InterpretersFor , (.@) , (.@@) ) where import Control.Applicative import Control.Monad #if __GLASGOW_HASKELL__ < 808 import Control.Monad.Fail #endif import Control.Monad.Fix import Control.Monad.IO.Class import Data.Functor.Identity import Data.Kind import Polysemy.Embed.Type import Polysemy.Fail.Type import Polysemy.Internal.Fixpoint import Polysemy.Internal.Index (InsertAtUnprovidedIndex, InsertAtIndex(insertAtIndex)) import Polysemy.Internal.Kind import Polysemy.Internal.NonDet import Polysemy.Internal.PluginLookup import Polysemy.Internal.Union import Type.Errors (WhenStuck) import Polysemy.Internal.Sing (ListOfLength (listOfLength)) -- $setup -- >>> import Data.Function -- >>> import Polysemy.State -- >>> import Polysemy.Error ------------------------------------------------------------------------------ -- | The 'Sem' monad handles computations of arbitrary extensible effects. -- A value of type @Sem r@ describes a program with the capabilities of -- @r@. For best results, @r@ should always be kept polymorphic, but you can -- add capabilities via the 'Member' constraint. -- -- The value of the 'Sem' monad is that it allows you to write programs -- against a set of effects without a predefined meaning, and provide that -- meaning later. For example, unlike with mtl, you can decide to interpret an -- 'Polysemy.Error.Error' effect traditionally as an 'Either', or instead -- as (a significantly faster) 'IO' 'Control.Exception.Exception'. These -- interpretations (and others that you might add) may be used interchangeably -- without needing to write any newtypes or 'Monad' instances. The only -- change needed to swap interpretations is to change a call from -- 'Polysemy.Error.runError' to 'Polysemy.Error.errorToIOFinal'. -- -- The effect stack @r@ can contain arbitrary other monads inside of it. These -- monads are lifted into effects via the 'Embed' effect. Monadic values can be -- lifted into a 'Sem' via 'embed'. -- -- Higher-order actions of another monad can be lifted into higher-order actions -- of 'Sem' via the 'Polysemy.Final' effect, which is more powerful -- than 'Embed', but also less flexible to interpret. -- -- A 'Sem' can be interpreted as a pure value (via 'run') or as any -- traditional 'Monad' (via 'runM' or 'Polysemy.runFinal'). -- Each effect @E@ comes equipped with some interpreters of the form: -- -- @ -- runE :: 'Sem' (E ': r) a -> 'Sem' r a -- @ -- -- which is responsible for removing the effect @E@ from the effect stack. It -- is the order in which you call the interpreters that determines the -- monomorphic representation of the @r@ parameter. -- -- Order of interpreters can be important - it determines behaviour of effects -- that manipulate state or change control flow. For example, when -- interpreting this action: -- -- >>> :{ -- example :: Members '[State String, Error String] r => Sem r String -- example = do -- put "start" -- let throwing, catching :: Members '[State String, Error String] r => Sem r String -- throwing = do -- modify (++"-throw") -- throw "error" -- get -- catching = do -- modify (++"-catch") -- get -- catch @String throwing (\ _ -> catching) -- :} -- -- when handling 'Polysemy.Error.Error' first, state is preserved after error -- occurs: -- -- >>> :{ -- example -- & runError -- & fmap (either id id) -- & evalState "" -- & runM -- & (print =<<) -- :} -- "start-throw-catch" -- -- while handling 'Polysemy.State.State' first discards state in such cases: -- -- >>> :{ -- example -- & evalState "" -- & runError -- & fmap (either id id) -- & runM -- & (print =<<) -- :} -- "start-catch" -- -- A good rule of thumb is to handle effects which should have \"global\" -- behaviour over other effects later in the chain. -- -- After all of your effects are handled, you'll be left with either -- a @'Sem' '[] a@, a @'Sem' '[ 'Embed' m ] a@, or a @'Sem' '[ 'Polysemy.Final' m ] a@ -- value, which can be consumed respectively by 'run', 'runM', and -- 'Polysemy.runFinal'. -- -- ==== Examples -- -- As an example of keeping @r@ polymorphic, we can consider the type -- -- @ -- 'Member' ('Polysemy.State.State' String) r => 'Sem' r () -- @ -- -- to be a program with access to -- -- @ -- 'Polysemy.State.get' :: 'Sem' r String -- 'Polysemy.State.put' :: String -> 'Sem' r () -- @ -- -- methods. -- -- By also adding a -- -- @ -- 'Member' ('Polysemy.Error' Bool) r -- @ -- -- constraint on @r@, we gain access to the -- -- @ -- 'Polysemy.Error.throw' :: Bool -> 'Sem' r a -- 'Polysemy.Error.catch' :: 'Sem' r a -> (Bool -> 'Sem' r a) -> 'Sem' r a -- @ -- -- functions as well. -- -- In this sense, a @'Member' ('Polysemy.State.State' s) r@ constraint is -- analogous to mtl's @'Control.Monad.State.Class.MonadState' s m@ and should -- be thought of as such. However, /unlike/ mtl, a 'Sem' monad may have -- an arbitrary number of the same effect. -- -- For example, we can write a 'Sem' program which can output either -- 'Int's or 'Bool's: -- -- @ -- foo :: ( 'Member' ('Polysemy.Output.Output' Int) r -- , 'Member' ('Polysemy.Output.Output' Bool) r -- ) -- => 'Sem' r () -- foo = do -- 'Polysemy.Output.output' @Int 5 -- 'Polysemy.Output.output' True -- @ -- -- Notice that we must use @-XTypeApplications@ to specify that we'd like to -- use the ('Polysemy.Output.Output' 'Int') effect. -- -- @since 0.1.2.0 newtype Sem r a = Sem { runSem :: ∀ m . Monad m => (∀ x. Union r (Sem r) x -> m x) -> m a } ------------------------------------------------------------------------------ -- | Due to a quirk of the GHC plugin interface, it's only easy to find -- transitive dependencies if they define an orphan instance. This orphan -- instance allows us to find "Polysemy.Internal" in the polysemy-plugin. instance PluginLookup Plugin ------------------------------------------------------------------------------ -- | Makes constraints of functions that use multiple effects shorter by -- translating single list of effects into multiple 'Member' constraints: -- -- @ -- foo :: 'Members' \'[ 'Polysemy.Output.Output' Int -- , 'Polysemy.Output.Output' Bool -- , 'Polysemy.State' String -- ] r -- => 'Sem' r () -- @ -- -- translates into: -- -- @ -- foo :: ( 'Member' ('Polysemy.Output.Output' Int) r -- , 'Member' ('Polysemy.Output.Output' Bool) r -- , 'Member' ('Polysemy.State' String) r -- ) -- => 'Sem' r () -- @ -- -- @since 0.1.2.0 type family Members es r :: Constraint where Members '[] r = () Members (e ': es) r = (Member e r, Members es r) ------------------------------------------------------------------------------ -- | Like 'runSem' but flipped for better ergonomics sometimes. usingSem :: Monad m => (∀ x. Union r (Sem r) x -> m x) -> Sem r a -> m a usingSem k m = runSem m k {-# INLINE usingSem #-} instance Functor (Sem f) where fmap f (Sem m) = Sem $ \k -> f <$> m k {-# INLINE fmap #-} instance Applicative (Sem f) where pure a = Sem $ \_ -> pure a {-# INLINE pure #-} Sem f <*> Sem a = Sem $ \k -> f k <*> a k {-# INLINE (<*>) #-} liftA2 f ma mb = Sem $ \k -> liftA2 f (runSem ma k) (runSem mb k) {-# INLINE liftA2 #-} ma <* mb = Sem $ \k -> runSem ma k <* runSem mb k {-# INLINE (<*) #-} -- Use (>>=) because many monads are bad at optimizing (*>). -- Ref https://github.com/polysemy-research/polysemy/issues/368 ma *> mb = Sem $ \k -> runSem ma k >>= \_ -> runSem mb k {-# INLINE (*>) #-} instance Monad (Sem f) where Sem ma >>= f = Sem $ \k -> do z <- ma k runSem (f z) k {-# INLINE (>>=) #-} instance (Member NonDet r) => Alternative (Sem r) where empty = send Empty {-# INLINE empty #-} a <|> b = send (Choose a b) {-# INLINE (<|>) #-} -- | @since 0.2.1.0 instance (Member NonDet r) => MonadPlus (Sem r) where mzero = empty mplus = (<|>) -- | @since 1.1.0.0 instance (Member Fail r) => MonadFail (Sem r) where fail = send . Fail {-# INLINE fail #-} -- | @since 1.6.0.0 instance Semigroup a => Semigroup (Sem f a) where (<>) = liftA2 (<>) -- | @since 1.6.0.0 instance Monoid a => Monoid (Sem f a) where mempty = pure mempty ------------------------------------------------------------------------------ -- | This instance will only lift 'IO' actions. If you want to lift into some -- other 'MonadIO' type, use this instance, and handle it via the -- 'Polysemy.IO.embedToMonadIO' interpretation. instance Member (Embed IO) r => MonadIO (Sem r) where liftIO = embed {-# INLINE liftIO #-} instance Member Fixpoint r => MonadFix (Sem r) where mfix f = send $ Fixpoint f {-# INLINE mfix #-} liftSem :: Union r (Sem r) a -> Sem r a liftSem u = Sem $ \k -> k u {-# INLINE liftSem #-} hoistSem :: (∀ x. Union r (Sem r) x -> Union r' (Sem r') x) -> Sem r a -> Sem r' a hoistSem nat (Sem m) = Sem $ \k -> m $ \u -> k $ nat u {-# INLINE hoistSem #-} ------------------------------------------------------------------------------ -- | Introduce an arbitrary number of effects on top of the effect stack. This -- function is highly polymorphic, so it may be good idea to use its more -- concrete versions (like 'raise') or type annotations to avoid vague errors -- in ambiguous contexts. -- -- @since 1.4.0.0 raise_ :: ∀ r r' a. Raise r r' => Sem r a -> Sem r' a raise_ = hoistSem $ hoist raise_ . raiseUnion {-# INLINE raise_ #-} -- | See 'raise''. -- -- @since 1.4.0.0 class Raise (r :: EffectRow) (r' :: EffectRow) where raiseUnion :: Union r m a -> Union r' m a instance {-# overlapping #-} Raise r r where raiseUnion = id {-# INLINE raiseUnion #-} instance (r' ~ (_0 ': r''), Raise r r'') => Raise r r' where raiseUnion = (\(Union n w) -> Union (There n) w) . raiseUnion {-# INLINE raiseUnion #-} ------------------------------------------------------------------------------ -- | Introduce an effect into 'Sem'. Analogous to -- 'Control.Monad.Class.Trans.lift' in the mtl ecosystem. For a variant that -- can introduce an arbitrary number of effects, see 'raise_'. raise :: ∀ e r a. Sem r a -> Sem (e ': r) a raise = raise_ {-# INLINE raise #-} ------------------------------------------------------------------------------ -- | Like 'raise', but introduces a new effect underneath the head of the -- list. See 'raiseUnder2' or 'raiseUnder3' for introducing more effects. If -- you need to introduce even more of them, check out 'subsume_'. -- -- 'raiseUnder' can be used in order to turn transformative interpreters -- into reinterpreters. This is especially useful if you're writing an -- interpreter which introduces an intermediary effect, and then want to use -- an existing interpreter on that effect. -- -- For example, given: -- -- @ -- fooToBar :: 'Member' Bar r => 'Sem' (Foo ': r) a -> 'Sem' r a -- runBar :: 'Sem' (Bar ': r) a -> 'Sem' r a -- @ -- -- You can write: -- -- @ -- runFoo :: 'Sem' (Foo ': r) a -> 'Sem' r a -- runFoo = -- runBar -- Consume Bar -- . fooToBar -- Interpret Foo in terms of the new Bar -- . 'raiseUnder' -- Introduces Bar under Foo -- @ -- -- @since 1.2.0.0 raiseUnder :: ∀ e2 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': e2 ': r) a raiseUnder = subsume_ {-# INLINE raiseUnder #-} ------------------------------------------------------------------------------ -- | Like 'raise', but introduces two new effects underneath the head of the -- list. -- -- @since 1.2.0.0 raiseUnder2 :: ∀ e2 e3 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': e2 ': e3 ': r) a raiseUnder2 = subsume_ {-# INLINE raiseUnder2 #-} ------------------------------------------------------------------------------ -- | Like 'raise', but introduces three new effects underneath the head of the -- list. -- -- @since 1.2.0.0 raiseUnder3 :: ∀ e2 e3 e4 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': e2 ': e3 ': e4 ': r) a raiseUnder3 = subsume_ {-# INLINE raiseUnder3 #-} ------------------------------------------------------------------------------ -- | Like 'raise', but introduces an effect two levels underneath the head of -- the list. -- -- @since 1.4.0.0 raise2Under :: ∀ e3 e1 e2 r a. Sem (e1 : e2 : r) a -> Sem (e1 : e2 : e3 : r) a raise2Under = hoistSem $ hoist raise2Under . weaken2Under where weaken2Under :: ∀ m x. Union (e1 : e2 : r) m x -> Union (e1 : e2 : e3 : r) m x weaken2Under (Union Here a) = Union Here a weaken2Under (Union (There Here) a) = Union (There Here) a weaken2Under (Union (There (There n)) a) = Union (There (There (There n))) a {-# INLINE weaken2Under #-} {-# INLINE raise2Under #-} ------------------------------------------------------------------------------ -- | Like 'raise', but introduces an effect three levels underneath the head -- of the list. -- -- @since 1.4.0.0 raise3Under :: ∀ e4 e1 e2 e3 r a. Sem (e1 : e2 : e3 : r) a -> Sem (e1 : e2 : e3 : e4 : r) a raise3Under = hoistSem $ hoist raise3Under . weaken3Under where weaken3Under :: ∀ m x. Union (e1 : e2 : e3 : r) m x -> Union (e1 : e2 : e3 : e4 : r) m x weaken3Under (Union Here a) = Union Here a weaken3Under (Union (There Here) a) = Union (There Here) a weaken3Under (Union (There (There Here)) a) = Union (There (There Here)) a weaken3Under (Union (There (There (There n))) a) = Union (There (There (There (There n)))) a {-# INLINE weaken3Under #-} {-# INLINE raise3Under #-} ------------------------------------------------------------------------------ -- | Allows reordering and adding known effects on top of the effect stack, as -- long as the polymorphic "tail" of new stack is a 'raise'-d version of the -- original one. This function is highly polymorphic, so it may be a good idea -- to use its more concrete version ('subsume'), fitting functions from the -- 'raise' family or type annotations to avoid vague errors in ambiguous -- contexts. -- -- @since 1.4.0.0 subsume_ :: ∀ r r' a. Subsume r r' => Sem r a -> Sem r' a subsume_ = hoistSem $ hoist subsume_ . subsumeUnion {-# INLINE subsume_ #-} -- | See 'subsume_'. -- -- @since 1.4.0.0 class Subsume (r :: EffectRow) (r' :: EffectRow) where subsumeUnion :: Union r m a -> Union r' m a instance {-# incoherent #-} Raise r r' => Subsume r r' where subsumeUnion = raiseUnion {-# INLINE subsumeUnion #-} instance (Member e r', Subsume r r') => Subsume (e ': r) r' where subsumeUnion = either subsumeUnion injWeaving . decomp {-# INLINE subsumeUnion #-} instance Subsume '[] r where subsumeUnion = absurdU {-# INLINE subsumeUnion #-} ------------------------------------------------------------------------------ -- | Interprets an effect in terms of another identical effect. -- -- This is useful for defining interpreters that use 'Polysemy.reinterpretH' -- without immediately consuming the newly introduced effect. -- Using such an interpreter recursively may result in duplicate effects, -- which may then be eliminated using 'subsume'. -- -- For a version that can introduce an arbitrary number of new effects and -- reorder existing ones, see 'subsume_'. -- -- @since 1.2.0.0 subsume :: ∀ e r a. Member e r => Sem (e ': r) a -> Sem r a subsume = subsume_ {-# INLINE subsume #-} ------------------------------------------------------------------------------ -- | Interprets an effect in terms of another identical effect, given an -- explicit proof that the effect exists in @r@. -- -- This is useful in conjunction with 'Polysemy.Membership.tryMembership' -- in order to conditionally make use of effects. For example: -- -- @ -- tryListen :: 'Polysemy.Membership.KnownRow' r => 'Sem' r a -> Maybe ('Sem' r ([Int], a)) -- tryListen m = case 'Polysemy.Membership.tryMembership' @('Polysemy.Writer.Writer' [Int]) of -- Just pr -> Just $ 'subsumeUsing' pr ('Polysemy.Writer.listen' ('raise' m)) -- _ -> Nothing -- @ -- -- @since 1.3.0.0 subsumeUsing :: ∀ e r a. ElemOf e r -> Sem (e ': r) a -> Sem r a subsumeUsing pr = let go :: ∀ x. Sem (e ': r) x -> Sem r x go = hoistSem $ \u -> hoist go $ case decomp u of Right w -> Union pr w Left g -> g {-# INLINE go #-} in go {-# INLINE subsumeUsing #-} ------------------------------------------------------------------------------ -- | Introduce a set of effects into 'Sem' at the index @i@, before the effect -- that previously occupied that position. This is intended to be used with a -- type application: -- -- @ -- let -- sem1 :: Sem [e1, e2, e3, e4, e5] a -- sem1 = insertAt @2 (sem0 :: Sem [e1, e2, e5] a) -- @ -- -- @since 1.6.0.0 insertAt :: forall index inserted head oldTail tail old full a . ( ListOfLength index head , WhenStuck index InsertAtUnprovidedIndex , old ~ Append head oldTail , tail ~ Append inserted oldTail , full ~ Append head tail , InsertAtIndex index head tail oldTail full inserted) => Sem old a -> Sem full a insertAt = hoistSem $ \u -> hoist (insertAt @index @inserted @head @oldTail) $ weakenMid @oldTail (listOfLength @index @head) (insertAtIndex @Effect @index @head @tail @oldTail @full @inserted) u {-# INLINE insertAt #-} ------------------------------------------------------------------------------ -- | Embed an effect into a 'Sem'. This is used primarily via -- 'Polysemy.makeSem' to implement smart constructors. send :: Member e r => e (Sem r) a -> Sem r a send = liftSem . inj {-# INLINE[3] send #-} ------------------------------------------------------------------------------ -- | Embed an effect into a 'Sem', given an explicit proof -- that the effect exists in @r@. -- -- This is useful in conjunction with 'Polysemy.Membership.tryMembership', -- in order to conditionally make use of effects. sendUsing :: ElemOf e r -> e (Sem r) a -> Sem r a sendUsing pr = liftSem . injUsing pr {-# INLINE[3] sendUsing #-} ------------------------------------------------------------------------------ -- | Embed a monadic action @m@ in 'Sem'. -- -- @since 1.0.0.0 embed :: Member (Embed m) r => m a -> Sem r a embed = send . Embed {-# INLINE embed #-} ------------------------------------------------------------------------------ -- | Run a 'Sem' containing no effects as a pure value. run :: Sem '[] a -> a run (Sem m) = runIdentity $ m absurdU {-# INLINE run #-} ------------------------------------------------------------------------------ -- | Lower a 'Sem' containing only a single lifted 'Monad' into that -- monad. runM :: Monad m => Sem '[Embed m] a -> m a runM (Sem m) = m $ \z -> case extract z of Weaving e s _ f _ -> do a <- unEmbed e pure $ f $ a <$ s {-# INLINE runM #-} ------------------------------------------------------------------------------ -- | Type synonym for interpreters that consume an effect without changing the -- return value. Offered for user convenience. -- -- @r@ Is kept polymorphic so it's possible to place constraints upon it: -- -- @ -- teletypeToIO :: 'Member' (Embed IO) r -- => 'InterpreterFor' Teletype r -- @ type InterpreterFor e r = ∀ a. Sem (e ': r) a -> Sem r a ------------------------------------------------------------------------------ -- | Variant of 'InterpreterFor' that takes a list of effects. -- @since 1.5.0.0 type InterpretersFor es r = ∀ a. Sem (Append es r) a -> Sem r a ------------------------------------------------------------------------------ -- | Some interpreters need to be able to lower down to the base monad (often -- 'IO') in order to function properly --- some good examples of this are -- 'Polysemy.Error.lowerError' and 'Polysemy.Resource.lowerResource'. -- -- However, these interpreters don't compose particularly nicely; for example, -- to run 'Polysemy.Resource.lowerResource', you must write: -- -- @ -- runM . lowerError runM -- @ -- -- Notice that 'runM' is duplicated in two places here. The situation gets -- exponentially worse the more intepreters you have that need to run in this -- pattern. -- -- Instead, '.@' performs the composition we'd like. The above can be written as -- -- @ -- (runM .@ lowerError) -- @ -- -- The parentheses here are important; without them you'll run into operator -- precedence errors. -- -- __Warning:__ This combinator will __duplicate work__ that is intended to be -- just for initialization. This can result in rather surprising behavior. For -- a version of '.@' that won't duplicate work, see the @.\@!@ operator in -- . -- -- Interpreters using 'Polysemy.Final' may be composed normally, and -- avoid the work duplication issue. For that reason, you're encouraged to use -- @-'Polysemy.Final'@ interpreters instead of @lower-@ interpreters whenever -- possible. (.@) :: Monad m => (∀ x. Sem r x -> m x) -- ^ The lowering function, likely 'runM'. -> (∀ y. (∀ x. Sem r x -> m x) -> Sem (e ': r) y -> Sem r y) -> Sem (e ': r) z -> m z f .@ g = f . g f infixl 8 .@ ------------------------------------------------------------------------------ -- | Like '.@', but for interpreters which change the resulting type --- eg. -- 'Polysemy.Error.lowerError'. (.@@) :: Monad m => (∀ x. Sem r x -> m x) -- ^ The lowering function, likely 'runM'. -> (∀ y. (∀ x. Sem r x -> m x) -> Sem (e ': r) y -> Sem r (f y)) -> Sem (e ': r) z -> m (f z) f .@@ g = f . g f infixl 8 .@@