
Pontarius XMPP 0.1 Manual (Third Draft)

The Pontarius Project

The 6th of July, 2011

Contents
1 Introduction 1

2 Features and Implementation Speci�cs 1

3 Usage 2
3.1 Creating the session . 2
3.2 Connecting the client . 3
3.3 Managing XMPP addresses . 3
3.4 Sending stanzas . 4
3.5 Concurrent usage . 4
3.6 Example echo server . 4

1 Introduction
Pontarius XMPP aims to be a convenient-to-use, powerful, correct, secure, and
extendable XMPP client library for Haskell. It is written by Jon Kristensen
and Mahdi Abdinejadi. Being licensed under the GNU Lesser General Public
License, Pontarius XMPP is free and open source software.

2 Features and Implementation Speci�cs
Pontarius XMPP 0.1 implements the client capabilities of the XMPP Core spec-
i�cation (RFC 6120)1. Below are the speci�cs of our implementation.

• The client is always the initiating entity

• A client-of-server connection is always exactly one TCP connection

• TLS is supported for client-to-server con�dentiality

• Only the SCRAM authentication method is supported
1http://tools.ietf.org/html/rfc6120

1

• ...

Later versions will add supports for di�erent XMPP extensions, such as RFC
6121 (XMPP IM), XEP-0004: Data Forms, and XEP-0077: In-Band Registra-
tion.2

3 Usage
Working with Pontarius XMPP is mostly done asynchronously; Pontarius XMPP
�owns� the XMPP thread, and calls di�erent StateT s m a callback functions
in the client. StateT is a monad transformer which allows the functions to be
stateful (being able to access and modify the arbitrary client-de�ned state of
type s) and to be executed on top of a MonadIO m monad (typically IO).

3.1 Creating the session
Setting up an XMPP session is done through the (blocking) session function:
s e s s i o n : : (MonadIO m, C l i en tS ta t e s m) => s −>

[Cl ientHandler s m] −> (StateT s m ()) −> m ()
The �rst parameter (of type s) is an arbitrary state that is de�ned by the

client. This is the initial state, and it will be passed to the stateful client
callbacks. It will typically be modi�ed by the client.

The second parameter is the list of client handlers to deal with XMPP call-
backs. The reason why we have a list is because we want to provide a �layered�
system of XMPP event handlers. For example, XMPP client developers may
want to have a dedicated handler to manage messages, implement a spam pro-
tection system, and so on. Messages are piped through these handlers one by
one, and any handler may block the message from being sent to the next han-
dler(s) above in the stack.
data MonadIO m => ClientHandler s m = Cl ientHandler {

messageReceived : : Maybe (Message −>
StateT s m Bool) , presenceRece ived : : Maybe
(Presence −> StateT s m Bool) , iqRece ived : :
Maybe (IQ −> StateT s m Bool) ,
sess ionTerminated : : Maybe (TerminationReason −>
StateT s m ()) }

ClientHandler is a record which speci�es four callback functions. The �rst
three deals with the three XMPP stanzas, and are called once an XMPP stanza
is received. These functions take the stanza in question, and are stateful with
the current client state. The boolean value returned signals whether or not the
message should be blocked to clients further down the stack. For example, a

2XMPP RFCs can be found at http://xmpp.org/xmpp-protocols/rfcs/, and the so-called
XEPs at http://xmpp.org/xmpp-protocols/xmpp-extensions/.

2

XEP-0030: Service Discovery handler may choose to hide disco#info requests
handlers above it in the stack. The last function is the callback that is used
when the XMPP session is terminated. All callbacks are optional.

The third argument to session is a callback function that will be called when
the session has been initialized.

Any function with access to the Session object can operate with the XMPP
session, such as connecting the XMPP client or sending stanzas. More on this
below.

3.2 Connecting the client
Di�erent clients connect to XMPP in di�erent ways. Some secure the stream
with TLS, and some authenticate with the server. Pontarius XMPP provides a
�exible function to help out with this in a convenient way:
connect : : MonadIO m => Ses s i on s m −> HostName −>

PortNumber −> Maybe (Ce r t i f i c a t e , (C e r t i f i c a t e −>
Bool)) −> Maybe (UserName , Password , Maybe
Resource) −> (ConnectResult −> StateT s m ()) −>
StateT s m ()

This function simply takes the host name and port number to connect to,
an optional tuple of the certi�cate to use and a function evaluating certi�cates
for TLS (if Nothing is provided, the connection will not be TLS secured), and
another optional tuple with user name, password, and an optional resource for
authentication (analogously, providing Nothing here causes Pontarius XMPP
not to authenticate). The �nal paramter is a callback function providing the
result of the connect action.

For more �ne-grained control of the connection, use the openStream, secure-
WithTLS, and authenticate functions.

3.3 Managing XMPP addresses
There are four functions dealing with XMPP addresses (or JIDs, as they are
also called):
f romStr ing : : S t r ing −> Maybe Address
f romStr ings : : Maybe St r ing −> Str ing −>

Maybe St r ing −> Maybe Address
i sBare : : Address −> Bool
i s F u l l : : Address −> Bool

These functions should be pretty self-explainatory to those who know the
XMPP: Core standard. The fromString functions takes one to three strings and
tries to construct an XMPP address. isBare and isFull checks whether or not
the bare is full (has a resource value).

3

3.4 Sending stanzas
Sending messages is done using this function:
sendMessage : : MonadIO m => Ses s i on s m −> Message −>

Maybe (Message −> StateT s m Bool) −>
Maybe (Timeout , StateT s m ()) −>
Maybe (StreamError −> StateT s m ()) −>
StateT s m ()

Like in section 3.2, the �rst parameter is the session object. The second is
the message (check the Message record type in the API). The third parameter is
an optional callback function to be executed if a reply to the message is received.
The fourth parameter contains a Timeout (Integer) value, and a callback that
Pontarius XMPP will call when a reply has not been received in the window
of the timeout. The last parameter is an optional callback that is called if a
stream error occurs.

Presence and IQ stanzas are sent in a very similar way.
Stanza IDs will be set for you if you leave them out. If, however, you want

to know what ID you send, you can acquire a stanza ID by calling the getID
function:
getID : : MonadIO m => Ses s i on s m −> StateT s m Str ing

3.5 Concurrent usage
Sometimes clients will want to perform XMPP actions from more than one
thread, or in other words, they want to perform actions from code that is not a
Pontarius XMPP callback. For these use cases, use injectAction:
i n j e c tAc t i on : : MonadIO m => Ses s i on s m −>

Maybe (StateT s m Bool) −> StateT s m () −>
StateT s m ()

The second parameter is an optional predicate callback to be executed right
before the third parameter callback is called. If it is provided and evaluates to
False, then the action will not be called. Otherwise, the action will be called.

3.6 Example echo server
We provide an example to further illustrate the Pontarius XMPP API and to
make it easier for developers to get started with the library. The program
illustrates how to connect, authenticate, set a presence, and echo all messages
received. It only uses one client handler. The contents of this example may be
used freely, as if it is in the public domain. You �nd it in the Examples directory
of the Pontarius XMPP source code.

4

