/*------------------------------------------------------------------------- * * execnodes.h * definitions for executor state nodes * * * Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * src/include/nodes/execnodes.h * *------------------------------------------------------------------------- */ #ifndef EXECNODES_H #define EXECNODES_H #include "access/genam.h" #include "access/heapam.h" #include "executor/instrument.h" #include "lib/pairingheap.h" #include "nodes/params.h" #include "nodes/plannodes.h" #include "utils/reltrigger.h" #include "utils/sortsupport.h" #include "utils/tuplestore.h" #include "utils/tuplesort.h" /* ---------------- * IndexInfo information * * this struct holds the information needed to construct new index * entries for a particular index. Used for both index_build and * retail creation of index entries. * * NumIndexAttrs number of columns in this index * KeyAttrNumbers underlying-rel attribute numbers used as keys * (zeroes indicate expressions) * Expressions expr trees for expression entries, or NIL if none * ExpressionsState exec state for expressions, or NIL if none * Predicate partial-index predicate, or NIL if none * PredicateState exec state for predicate, or NIL if none * ExclusionOps Per-column exclusion operators, or NULL if none * ExclusionProcs Underlying function OIDs for ExclusionOps * ExclusionStrats Opclass strategy numbers for ExclusionOps * UniqueOps Theses are like Exclusion*, but for unique indexes * UniqueProcs * UniqueStrats * Unique is it a unique index? * ReadyForInserts is it valid for inserts? * Concurrent are we doing a concurrent index build? * BrokenHotChain did we detect any broken HOT chains? * * ii_Concurrent and ii_BrokenHotChain are used only during index build; * they're conventionally set to false otherwise. * ---------------- */ typedef struct IndexInfo { NodeTag type; int ii_NumIndexAttrs; AttrNumber ii_KeyAttrNumbers[INDEX_MAX_KEYS]; List *ii_Expressions; /* list of Expr */ List *ii_ExpressionsState; /* list of ExprState */ List *ii_Predicate; /* list of Expr */ List *ii_PredicateState; /* list of ExprState */ Oid *ii_ExclusionOps; /* array with one entry per column */ Oid *ii_ExclusionProcs; /* array with one entry per column */ uint16 *ii_ExclusionStrats; /* array with one entry per column */ Oid *ii_UniqueOps; /* array with one entry per column */ Oid *ii_UniqueProcs; /* array with one entry per column */ uint16 *ii_UniqueStrats; /* array with one entry per column */ bool ii_Unique; bool ii_ReadyForInserts; bool ii_Concurrent; bool ii_BrokenHotChain; } IndexInfo; /* ---------------- * ExprContext_CB * * List of callbacks to be called at ExprContext shutdown. * ---------------- */ typedef void (*ExprContextCallbackFunction) (Datum arg); typedef struct ExprContext_CB { struct ExprContext_CB *next; ExprContextCallbackFunction function; Datum arg; } ExprContext_CB; /* ---------------- * ExprContext * * This class holds the "current context" information * needed to evaluate expressions for doing tuple qualifications * and tuple projections. For example, if an expression refers * to an attribute in the current inner tuple then we need to know * what the current inner tuple is and so we look at the expression * context. * * There are two memory contexts associated with an ExprContext: * * ecxt_per_query_memory is a query-lifespan context, typically the same * context the ExprContext node itself is allocated in. This context * can be used for purposes such as storing function call cache info. * * ecxt_per_tuple_memory is a short-term context for expression results. * As the name suggests, it will typically be reset once per tuple, * before we begin to evaluate expressions for that tuple. Each * ExprContext normally has its very own per-tuple memory context. * * CurrentMemoryContext should be set to ecxt_per_tuple_memory before * calling ExecEvalExpr() --- see ExecEvalExprSwitchContext(). * ---------------- */ typedef struct ExprContext { NodeTag type; /* Tuples that Var nodes in expression may refer to */ TupleTableSlot *ecxt_scantuple; TupleTableSlot *ecxt_innertuple; TupleTableSlot *ecxt_outertuple; /* Memory contexts for expression evaluation --- see notes above */ MemoryContext ecxt_per_query_memory; MemoryContext ecxt_per_tuple_memory; /* Values to substitute for Param nodes in expression */ ParamExecData *ecxt_param_exec_vals; /* for PARAM_EXEC params */ ParamListInfo ecxt_param_list_info; /* for other param types */ /* * Values to substitute for Aggref nodes in the expressions of an Agg * node, or for WindowFunc nodes within a WindowAgg node. */ Datum *ecxt_aggvalues; /* precomputed values for aggs/windowfuncs */ bool *ecxt_aggnulls; /* null flags for aggs/windowfuncs */ /* Value to substitute for CaseTestExpr nodes in expression */ Datum caseValue_datum; bool caseValue_isNull; /* Value to substitute for CoerceToDomainValue nodes in expression */ Datum domainValue_datum; bool domainValue_isNull; /* Link to containing EState (NULL if a standalone ExprContext) */ struct EState *ecxt_estate; /* Functions to call back when ExprContext is shut down or rescanned */ ExprContext_CB *ecxt_callbacks; } ExprContext; /* * Set-result status returned by ExecEvalExpr() */ typedef enum { ExprSingleResult, /* expression does not return a set */ ExprMultipleResult, /* this result is an element of a set */ ExprEndResult /* there are no more elements in the set */ } ExprDoneCond; /* * Return modes for functions returning sets. Note values must be chosen * as separate bits so that a bitmask can be formed to indicate supported * modes. SFRM_Materialize_Random and SFRM_Materialize_Preferred are * auxiliary flags about SFRM_Materialize mode, rather than separate modes. */ typedef enum { SFRM_ValuePerCall = 0x01, /* one value returned per call */ SFRM_Materialize = 0x02, /* result set instantiated in Tuplestore */ SFRM_Materialize_Random = 0x04, /* Tuplestore needs randomAccess */ SFRM_Materialize_Preferred = 0x08 /* caller prefers Tuplestore */ } SetFunctionReturnMode; /* * When calling a function that might return a set (multiple rows), * a node of this type is passed as fcinfo->resultinfo to allow * return status to be passed back. A function returning set should * raise an error if no such resultinfo is provided. */ typedef struct ReturnSetInfo { NodeTag type; /* values set by caller: */ ExprContext *econtext; /* context function is being called in */ TupleDesc expectedDesc; /* tuple descriptor expected by caller */ int allowedModes; /* bitmask: return modes caller can handle */ /* result status from function (but pre-initialized by caller): */ SetFunctionReturnMode returnMode; /* actual return mode */ ExprDoneCond isDone; /* status for ValuePerCall mode */ /* fields filled by function in Materialize return mode: */ Tuplestorestate *setResult; /* holds the complete returned tuple set */ TupleDesc setDesc; /* actual descriptor for returned tuples */ } ReturnSetInfo; /* ---------------- * ProjectionInfo node information * * This is all the information needed to perform projections --- * that is, form new tuples by evaluation of targetlist expressions. * Nodes which need to do projections create one of these. * * ExecProject() evaluates the tlist, forms a tuple, and stores it * in the given slot. Note that the result will be a "virtual" tuple * unless ExecMaterializeSlot() is then called to force it to be * converted to a physical tuple. The slot must have a tupledesc * that matches the output of the tlist! * * The planner very often produces tlists that consist entirely of * simple Var references (lower levels of a plan tree almost always * look like that). And top-level tlists are often mostly Vars too. * We therefore optimize execution of simple-Var tlist entries. * The pi_targetlist list actually contains only the tlist entries that * aren't simple Vars, while those that are Vars are processed using the * varSlotOffsets/varNumbers/varOutputCols arrays. * * The lastXXXVar fields are used to optimize fetching of fields from * input tuples: they let us do a slot_getsomeattrs() call to ensure * that all needed attributes are extracted in one pass. * * targetlist target list for projection (non-Var expressions only) * exprContext expression context in which to evaluate targetlist * slot slot to place projection result in * itemIsDone workspace array for ExecProject * directMap true if varOutputCols[] is an identity map * numSimpleVars number of simple Vars found in original tlist * varSlotOffsets array indicating which slot each simple Var is from * varNumbers array containing input attr numbers of simple Vars * varOutputCols array containing output attr numbers of simple Vars * lastInnerVar highest attnum from inner tuple slot (0 if none) * lastOuterVar highest attnum from outer tuple slot (0 if none) * lastScanVar highest attnum from scan tuple slot (0 if none) * ---------------- */ typedef struct ProjectionInfo { NodeTag type; List *pi_targetlist; ExprContext *pi_exprContext; TupleTableSlot *pi_slot; ExprDoneCond *pi_itemIsDone; bool pi_directMap; int pi_numSimpleVars; int *pi_varSlotOffsets; int *pi_varNumbers; int *pi_varOutputCols; int pi_lastInnerVar; int pi_lastOuterVar; int pi_lastScanVar; } ProjectionInfo; /* ---------------- * JunkFilter * * This class is used to store information regarding junk attributes. * A junk attribute is an attribute in a tuple that is needed only for * storing intermediate information in the executor, and does not belong * in emitted tuples. For example, when we do an UPDATE query, * the planner adds a "junk" entry to the targetlist so that the tuples * returned to ExecutePlan() contain an extra attribute: the ctid of * the tuple to be updated. This is needed to do the update, but we * don't want the ctid to be part of the stored new tuple! So, we * apply a "junk filter" to remove the junk attributes and form the * real output tuple. The junkfilter code also provides routines to * extract the values of the junk attribute(s) from the input tuple. * * targetList: the original target list (including junk attributes). * cleanTupType: the tuple descriptor for the "clean" tuple (with * junk attributes removed). * cleanMap: A map with the correspondence between the non-junk * attribute numbers of the "original" tuple and the * attribute numbers of the "clean" tuple. * resultSlot: tuple slot used to hold cleaned tuple. * junkAttNo: not used by junkfilter code. Can be used by caller * to remember the attno of a specific junk attribute * (nodeModifyTable.c keeps the "ctid" or "wholerow" * attno here). * ---------------- */ typedef struct JunkFilter { NodeTag type; List *jf_targetList; TupleDesc jf_cleanTupType; AttrNumber *jf_cleanMap; TupleTableSlot *jf_resultSlot; AttrNumber jf_junkAttNo; } JunkFilter; /* ---------------- * ResultRelInfo information * * Whenever we update an existing relation, we have to * update indices on the relation, and perhaps also fire triggers. * The ResultRelInfo class is used to hold all the information needed * about a result relation, including indices.. -cim 10/15/89 * * RangeTableIndex result relation's range table index * RelationDesc relation descriptor for result relation * NumIndices # of indices existing on result relation * IndexRelationDescs array of relation descriptors for indices * IndexRelationInfo array of key/attr info for indices * TrigDesc triggers to be fired, if any * TrigFunctions cached lookup info for trigger functions * TrigWhenExprs array of trigger WHEN expr states * TrigInstrument optional runtime measurements for triggers * FdwRoutine FDW callback functions, if foreign table * FdwState available to save private state of FDW * WithCheckOptions list of WithCheckOption's to be checked * WithCheckOptionExprs list of WithCheckOption expr states * ConstraintExprs array of constraint-checking expr states * junkFilter for removing junk attributes from tuples * projectReturning for computing a RETURNING list * onConflictSetProj for computing ON CONFLICT DO UPDATE SET * onConflictSetWhere list of ON CONFLICT DO UPDATE exprs (qual) * ---------------- */ typedef struct ResultRelInfo { NodeTag type; Index ri_RangeTableIndex; Relation ri_RelationDesc; int ri_NumIndices; RelationPtr ri_IndexRelationDescs; IndexInfo **ri_IndexRelationInfo; TriggerDesc *ri_TrigDesc; FmgrInfo *ri_TrigFunctions; List **ri_TrigWhenExprs; Instrumentation *ri_TrigInstrument; struct FdwRoutine *ri_FdwRoutine; void *ri_FdwState; List *ri_WithCheckOptions; List *ri_WithCheckOptionExprs; List **ri_ConstraintExprs; JunkFilter *ri_junkFilter; ProjectionInfo *ri_projectReturning; ProjectionInfo *ri_onConflictSetProj; List *ri_onConflictSetWhere; } ResultRelInfo; /* ---------------- * EState information * * Master working state for an Executor invocation * ---------------- */ typedef struct EState { NodeTag type; /* Basic state for all query types: */ ScanDirection es_direction; /* current scan direction */ Snapshot es_snapshot; /* time qual to use */ Snapshot es_crosscheck_snapshot; /* crosscheck time qual for RI */ List *es_range_table; /* List of RangeTblEntry */ PlannedStmt *es_plannedstmt; /* link to top of plan tree */ JunkFilter *es_junkFilter; /* top-level junk filter, if any */ /* If query can insert/delete tuples, the command ID to mark them with */ CommandId es_output_cid; /* Info about target table(s) for insert/update/delete queries: */ ResultRelInfo *es_result_relations; /* array of ResultRelInfos */ int es_num_result_relations; /* length of array */ ResultRelInfo *es_result_relation_info; /* currently active array elt */ /* Stuff used for firing triggers: */ List *es_trig_target_relations; /* trigger-only ResultRelInfos */ TupleTableSlot *es_trig_tuple_slot; /* for trigger output tuples */ TupleTableSlot *es_trig_oldtup_slot; /* for TriggerEnabled */ TupleTableSlot *es_trig_newtup_slot; /* for TriggerEnabled */ /* Parameter info: */ ParamListInfo es_param_list_info; /* values of external params */ ParamExecData *es_param_exec_vals; /* values of internal params */ /* Other working state: */ MemoryContext es_query_cxt; /* per-query context in which EState lives */ List *es_tupleTable; /* List of TupleTableSlots */ List *es_rowMarks; /* List of ExecRowMarks */ uint32 es_processed; /* # of tuples processed */ Oid es_lastoid; /* last oid processed (by INSERT) */ int es_top_eflags; /* eflags passed to ExecutorStart */ int es_instrument; /* OR of InstrumentOption flags */ bool es_finished; /* true when ExecutorFinish is done */ List *es_exprcontexts; /* List of ExprContexts within EState */ List *es_subplanstates; /* List of PlanState for SubPlans */ List *es_auxmodifytables; /* List of secondary ModifyTableStates */ /* * this ExprContext is for per-output-tuple operations, such as constraint * checks and index-value computations. It will be reset for each output * tuple. Note that it will be created only if needed. */ ExprContext *es_per_tuple_exprcontext; /* * These fields are for re-evaluating plan quals when an updated tuple is * substituted in READ COMMITTED mode. es_epqTuple[] contains tuples that * scan plan nodes should return instead of whatever they'd normally * return, or NULL if nothing to return; es_epqTupleSet[] is true if a * particular array entry is valid; and es_epqScanDone[] is state to * remember if the tuple has been returned already. Arrays are of size * list_length(es_range_table) and are indexed by scan node scanrelid - 1. */ HeapTuple *es_epqTuple; /* array of EPQ substitute tuples */ bool *es_epqTupleSet; /* true if EPQ tuple is provided */ bool *es_epqScanDone; /* true if EPQ tuple has been fetched */ } EState; /* * ExecRowMark - * runtime representation of FOR [KEY] UPDATE/SHARE clauses * * When doing UPDATE, DELETE, or SELECT FOR [KEY] UPDATE/SHARE, we will have an * ExecRowMark for each non-target relation in the query (except inheritance * parent RTEs, which can be ignored at runtime). Virtual relations such as * subqueries-in-FROM will have an ExecRowMark with relation == NULL. See * PlanRowMark for details about most of the fields. In addition to fields * directly derived from PlanRowMark, we store an activity flag (to denote * inactive children of inheritance trees), curCtid, which is used by the * WHERE CURRENT OF code, and ermExtra, which is available for use by the plan * node that sources the relation (e.g., for a foreign table the FDW can use * ermExtra to hold information). * * EState->es_rowMarks is a list of these structs. */ typedef struct ExecRowMark { Relation relation; /* opened and suitably locked relation */ Oid relid; /* its OID (or InvalidOid, if subquery) */ Index rti; /* its range table index */ Index prti; /* parent range table index, if child */ Index rowmarkId; /* unique identifier for resjunk columns */ RowMarkType markType; /* see enum in nodes/plannodes.h */ LockClauseStrength strength; /* LockingClause's strength, or LCS_NONE */ LockWaitPolicy waitPolicy; /* NOWAIT and SKIP LOCKED */ bool ermActive; /* is this mark relevant for current tuple? */ ItemPointerData curCtid; /* ctid of currently locked tuple, if any */ void *ermExtra; /* available for use by relation source node */ } ExecRowMark; /* * ExecAuxRowMark - * additional runtime representation of FOR [KEY] UPDATE/SHARE clauses * * Each LockRows and ModifyTable node keeps a list of the rowmarks it needs to * deal with. In addition to a pointer to the related entry in es_rowMarks, * this struct carries the column number(s) of the resjunk columns associated * with the rowmark (see comments for PlanRowMark for more detail). In the * case of ModifyTable, there has to be a separate ExecAuxRowMark list for * each child plan, because the resjunk columns could be at different physical * column positions in different subplans. */ typedef struct ExecAuxRowMark { ExecRowMark *rowmark; /* related entry in es_rowMarks */ AttrNumber ctidAttNo; /* resno of ctid junk attribute, if any */ AttrNumber toidAttNo; /* resno of tableoid junk attribute, if any */ AttrNumber wholeAttNo; /* resno of whole-row junk attribute, if any */ } ExecAuxRowMark; /* ---------------------------------------------------------------- * Tuple Hash Tables * * All-in-memory tuple hash tables are used for a number of purposes. * * Note: tab_hash_funcs are for the key datatype(s) stored in the table, * and tab_eq_funcs are non-cross-type equality operators for those types. * Normally these are the only functions used, but FindTupleHashEntry() * supports searching a hashtable using cross-data-type hashing. For that, * the caller must supply hash functions for the LHS datatype as well as * the cross-type equality operators to use. in_hash_funcs and cur_eq_funcs * are set to point to the caller's function arrays while doing such a search. * During LookupTupleHashEntry(), they point to tab_hash_funcs and * tab_eq_funcs respectively. * ---------------------------------------------------------------- */ typedef struct TupleHashEntryData *TupleHashEntry; typedef struct TupleHashTableData *TupleHashTable; typedef struct TupleHashEntryData { /* firstTuple must be the first field in this struct! */ MinimalTuple firstTuple; /* copy of first tuple in this group */ /* there may be additional data beyond the end of this struct */ } TupleHashEntryData; /* VARIABLE LENGTH STRUCT */ typedef struct TupleHashTableData { HTAB *hashtab; /* underlying dynahash table */ int numCols; /* number of columns in lookup key */ AttrNumber *keyColIdx; /* attr numbers of key columns */ FmgrInfo *tab_hash_funcs; /* hash functions for table datatype(s) */ FmgrInfo *tab_eq_funcs; /* equality functions for table datatype(s) */ MemoryContext tablecxt; /* memory context containing table */ MemoryContext tempcxt; /* context for function evaluations */ Size entrysize; /* actual size to make each hash entry */ TupleTableSlot *tableslot; /* slot for referencing table entries */ /* The following fields are set transiently for each table search: */ TupleTableSlot *inputslot; /* current input tuple's slot */ FmgrInfo *in_hash_funcs; /* hash functions for input datatype(s) */ FmgrInfo *cur_eq_funcs; /* equality functions for input vs. table */ } TupleHashTableData; typedef HASH_SEQ_STATUS TupleHashIterator; /* * Use InitTupleHashIterator/TermTupleHashIterator for a read/write scan. * Use ResetTupleHashIterator if the table can be frozen (in this case no * explicit scan termination is needed). */ #define InitTupleHashIterator(htable, iter) \ hash_seq_init(iter, (htable)->hashtab) #define TermTupleHashIterator(iter) \ hash_seq_term(iter) #define ResetTupleHashIterator(htable, iter) \ do { \ hash_freeze((htable)->hashtab); \ hash_seq_init(iter, (htable)->hashtab); \ } while (0) #define ScanTupleHashTable(iter) \ ((TupleHashEntry) hash_seq_search(iter)) /* ---------------------------------------------------------------- * Expression State Trees * * Each executable expression tree has a parallel ExprState tree. * * Unlike PlanState, there is not an exact one-for-one correspondence between * ExprState node types and Expr node types. Many Expr node types have no * need for node-type-specific run-time state, and so they can use plain * ExprState or GenericExprState as their associated ExprState node type. * ---------------------------------------------------------------- */ /* ---------------- * ExprState node * * ExprState is the common superclass for all ExprState-type nodes. * * It can also be instantiated directly for leaf Expr nodes that need no * local run-time state (such as Var, Const, or Param). * * To save on dispatch overhead, each ExprState node contains a function * pointer to the routine to execute to evaluate the node. * ---------------- */ typedef struct ExprState ExprState; typedef Datum (*ExprStateEvalFunc) (ExprState *expression, ExprContext *econtext, bool *isNull, ExprDoneCond *isDone); struct ExprState { NodeTag type; Expr *expr; /* associated Expr node */ ExprStateEvalFunc evalfunc; /* routine to run to execute node */ }; /* ---------------- * GenericExprState node * * This is used for Expr node types that need no local run-time state, * but have one child Expr node. * ---------------- */ typedef struct GenericExprState { ExprState xprstate; ExprState *arg; /* state of my child node */ } GenericExprState; /* ---------------- * WholeRowVarExprState node * ---------------- */ typedef struct WholeRowVarExprState { ExprState xprstate; struct PlanState *parent; /* parent PlanState, or NULL if none */ TupleDesc wrv_tupdesc; /* descriptor for resulting tuples */ JunkFilter *wrv_junkFilter; /* JunkFilter to remove resjunk cols */ } WholeRowVarExprState; /* ---------------- * AggrefExprState node * ---------------- */ typedef struct AggrefExprState { ExprState xprstate; List *aggdirectargs; /* states of direct-argument expressions */ List *args; /* states of aggregated-argument expressions */ ExprState *aggfilter; /* state of FILTER expression, if any */ int aggno; /* ID number for agg within its plan node */ } AggrefExprState; /* ---------------- * GroupingFuncExprState node * * The list of column numbers refers to the input tuples of the Agg node to * which the GroupingFunc belongs, and may contain 0 for references to columns * that are only present in grouping sets processed by different Agg nodes (and * which are therefore always considered "grouping" here). * ---------------- */ typedef struct GroupingFuncExprState { ExprState xprstate; struct AggState *aggstate; List *clauses; /* integer list of column numbers */ } GroupingFuncExprState; /* ---------------- * WindowFuncExprState node * ---------------- */ typedef struct WindowFuncExprState { ExprState xprstate; List *args; /* states of argument expressions */ ExprState *aggfilter; /* FILTER expression */ int wfuncno; /* ID number for wfunc within its plan node */ } WindowFuncExprState; /* ---------------- * ArrayRefExprState node * * Note: array types can be fixed-length (typlen > 0), but only when the * element type is itself fixed-length. Otherwise they are varlena structures * and have typlen = -1. In any case, an array type is never pass-by-value. * ---------------- */ typedef struct ArrayRefExprState { ExprState xprstate; List *refupperindexpr; /* states for child nodes */ List *reflowerindexpr; ExprState *refexpr; ExprState *refassgnexpr; int16 refattrlength; /* typlen of array type */ int16 refelemlength; /* typlen of the array element type */ bool refelembyval; /* is the element type pass-by-value? */ char refelemalign; /* typalign of the element type */ } ArrayRefExprState; /* ---------------- * FuncExprState node * * Although named for FuncExpr, this is also used for OpExpr, DistinctExpr, * and NullIf nodes; be careful to check what xprstate.expr is actually * pointing at! * ---------------- */ typedef struct FuncExprState { ExprState xprstate; List *args; /* states of argument expressions */ /* * Function manager's lookup info for the target function. If func.fn_oid * is InvalidOid, we haven't initialized it yet (nor any of the following * fields). */ FmgrInfo func; /* * For a set-returning function (SRF) that returns a tuplestore, we keep * the tuplestore here and dole out the result rows one at a time. The * slot holds the row currently being returned. */ Tuplestorestate *funcResultStore; TupleTableSlot *funcResultSlot; /* * In some cases we need to compute a tuple descriptor for the function's * output. If so, it's stored here. */ TupleDesc funcResultDesc; bool funcReturnsTuple; /* valid when funcResultDesc isn't * NULL */ /* * setArgsValid is true when we are evaluating a set-returning function * that uses value-per-call mode and we are in the middle of a call * series; we want to pass the same argument values to the function again * (and again, until it returns ExprEndResult). This indicates that * fcinfo_data already contains valid argument data. */ bool setArgsValid; /* * Flag to remember whether we found a set-valued argument to the * function. This causes the function result to be a set as well. Valid * only when setArgsValid is true or funcResultStore isn't NULL. */ bool setHasSetArg; /* some argument returns a set */ /* * Flag to remember whether we have registered a shutdown callback for * this FuncExprState. We do so only if funcResultStore or setArgsValid * has been set at least once (since all the callback is for is to release * the tuplestore or clear setArgsValid). */ bool shutdown_reg; /* a shutdown callback is registered */ /* * Call parameter structure for the function. This has been initialized * (by InitFunctionCallInfoData) if func.fn_oid is valid. It also saves * argument values between calls, when setArgsValid is true. */ FunctionCallInfoData fcinfo_data; } FuncExprState; /* ---------------- * ScalarArrayOpExprState node * * This is a FuncExprState plus some additional data. * ---------------- */ typedef struct ScalarArrayOpExprState { FuncExprState fxprstate; /* Cached info about array element type */ Oid element_type; int16 typlen; bool typbyval; char typalign; } ScalarArrayOpExprState; /* ---------------- * BoolExprState node * ---------------- */ typedef struct BoolExprState { ExprState xprstate; List *args; /* states of argument expression(s) */ } BoolExprState; /* ---------------- * SubPlanState node * ---------------- */ typedef struct SubPlanState { ExprState xprstate; struct PlanState *planstate; /* subselect plan's state tree */ struct PlanState *parent; /* parent plan node's state tree */ ExprState *testexpr; /* state of combining expression */ List *args; /* states of argument expression(s) */ HeapTuple curTuple; /* copy of most recent tuple from subplan */ Datum curArray; /* most recent array from ARRAY() subplan */ /* these are used when hashing the subselect's output: */ ProjectionInfo *projLeft; /* for projecting lefthand exprs */ ProjectionInfo *projRight; /* for projecting subselect output */ TupleHashTable hashtable; /* hash table for no-nulls subselect rows */ TupleHashTable hashnulls; /* hash table for rows with null(s) */ bool havehashrows; /* TRUE if hashtable is not empty */ bool havenullrows; /* TRUE if hashnulls is not empty */ MemoryContext hashtablecxt; /* memory context containing hash tables */ MemoryContext hashtempcxt; /* temp memory context for hash tables */ ExprContext *innerecontext; /* econtext for computing inner tuples */ AttrNumber *keyColIdx; /* control data for hash tables */ FmgrInfo *tab_hash_funcs; /* hash functions for table datatype(s) */ FmgrInfo *tab_eq_funcs; /* equality functions for table datatype(s) */ FmgrInfo *lhs_hash_funcs; /* hash functions for lefthand datatype(s) */ FmgrInfo *cur_eq_funcs; /* equality functions for LHS vs. table */ } SubPlanState; /* ---------------- * AlternativeSubPlanState node * ---------------- */ typedef struct AlternativeSubPlanState { ExprState xprstate; List *subplans; /* states of alternative subplans */ int active; /* list index of the one we're using */ } AlternativeSubPlanState; /* ---------------- * FieldSelectState node * ---------------- */ typedef struct FieldSelectState { ExprState xprstate; ExprState *arg; /* input expression */ TupleDesc argdesc; /* tupdesc for most recent input */ } FieldSelectState; /* ---------------- * FieldStoreState node * ---------------- */ typedef struct FieldStoreState { ExprState xprstate; ExprState *arg; /* input tuple value */ List *newvals; /* new value(s) for field(s) */ TupleDesc argdesc; /* tupdesc for most recent input */ } FieldStoreState; /* ---------------- * CoerceViaIOState node * ---------------- */ typedef struct CoerceViaIOState { ExprState xprstate; ExprState *arg; /* input expression */ FmgrInfo outfunc; /* lookup info for source output function */ FmgrInfo infunc; /* lookup info for result input function */ Oid intypioparam; /* argument needed for input function */ } CoerceViaIOState; /* ---------------- * ArrayCoerceExprState node * ---------------- */ typedef struct ArrayCoerceExprState { ExprState xprstate; ExprState *arg; /* input array value */ Oid resultelemtype; /* element type of result array */ FmgrInfo elemfunc; /* lookup info for element coercion function */ /* use struct pointer to avoid including array.h here */ struct ArrayMapState *amstate; /* workspace for array_map */ } ArrayCoerceExprState; /* ---------------- * ConvertRowtypeExprState node * ---------------- */ typedef struct ConvertRowtypeExprState { ExprState xprstate; ExprState *arg; /* input tuple value */ TupleDesc indesc; /* tupdesc for source rowtype */ TupleDesc outdesc; /* tupdesc for result rowtype */ /* use "struct" so we needn't include tupconvert.h here */ struct TupleConversionMap *map; bool initialized; } ConvertRowtypeExprState; /* ---------------- * CaseExprState node * ---------------- */ typedef struct CaseExprState { ExprState xprstate; ExprState *arg; /* implicit equality comparison argument */ List *args; /* the arguments (list of WHEN clauses) */ ExprState *defresult; /* the default result (ELSE clause) */ } CaseExprState; /* ---------------- * CaseWhenState node * ---------------- */ typedef struct CaseWhenState { ExprState xprstate; ExprState *expr; /* condition expression */ ExprState *result; /* substitution result */ } CaseWhenState; /* ---------------- * ArrayExprState node * * Note: ARRAY[] expressions always produce varlena arrays, never fixed-length * arrays. * ---------------- */ typedef struct ArrayExprState { ExprState xprstate; List *elements; /* states for child nodes */ int16 elemlength; /* typlen of the array element type */ bool elembyval; /* is the element type pass-by-value? */ char elemalign; /* typalign of the element type */ } ArrayExprState; /* ---------------- * RowExprState node * ---------------- */ typedef struct RowExprState { ExprState xprstate; List *args; /* the arguments */ TupleDesc tupdesc; /* descriptor for result tuples */ } RowExprState; /* ---------------- * RowCompareExprState node * ---------------- */ typedef struct RowCompareExprState { ExprState xprstate; List *largs; /* the left-hand input arguments */ List *rargs; /* the right-hand input arguments */ FmgrInfo *funcs; /* array of comparison function info */ Oid *collations; /* array of collations to use */ } RowCompareExprState; /* ---------------- * CoalesceExprState node * ---------------- */ typedef struct CoalesceExprState { ExprState xprstate; List *args; /* the arguments */ } CoalesceExprState; /* ---------------- * MinMaxExprState node * ---------------- */ typedef struct MinMaxExprState { ExprState xprstate; List *args; /* the arguments */ FmgrInfo cfunc; /* lookup info for comparison func */ } MinMaxExprState; /* ---------------- * XmlExprState node * ---------------- */ typedef struct XmlExprState { ExprState xprstate; List *named_args; /* ExprStates for named arguments */ List *args; /* ExprStates for other arguments */ } XmlExprState; /* ---------------- * NullTestState node * ---------------- */ typedef struct NullTestState { ExprState xprstate; ExprState *arg; /* input expression */ /* used only if input is of composite type: */ TupleDesc argdesc; /* tupdesc for most recent input */ } NullTestState; /* ---------------- * CoerceToDomainState node * ---------------- */ typedef struct CoerceToDomainState { ExprState xprstate; ExprState *arg; /* input expression */ /* Cached set of constraints that need to be checked */ /* use struct pointer to avoid including typcache.h here */ struct DomainConstraintRef *constraint_ref; } CoerceToDomainState; /* * DomainConstraintState - one item to check during CoerceToDomain * * Note: this is just a Node, and not an ExprState, because it has no * corresponding Expr to link to. Nonetheless it is part of an ExprState * tree, so we give it a name following the xxxState convention. */ typedef enum DomainConstraintType { DOM_CONSTRAINT_NOTNULL, DOM_CONSTRAINT_CHECK } DomainConstraintType; typedef struct DomainConstraintState { NodeTag type; DomainConstraintType constrainttype; /* constraint type */ char *name; /* name of constraint (for error msgs) */ ExprState *check_expr; /* for CHECK, a boolean expression */ } DomainConstraintState; /* ---------------------------------------------------------------- * Executor State Trees * * An executing query has a PlanState tree paralleling the Plan tree * that describes the plan. * ---------------------------------------------------------------- */ /* ---------------- * PlanState node * * We never actually instantiate any PlanState nodes; this is just the common * abstract superclass for all PlanState-type nodes. * ---------------- */ typedef struct PlanState { NodeTag type; Plan *plan; /* associated Plan node */ EState *state; /* at execution time, states of individual * nodes point to one EState for the whole * top-level plan */ Instrumentation *instrument; /* Optional runtime stats for this node */ /* * Common structural data for all Plan types. These links to subsidiary * state trees parallel links in the associated plan tree (except for the * subPlan list, which does not exist in the plan tree). */ List *targetlist; /* target list to be computed at this node */ List *qual; /* implicitly-ANDed qual conditions */ struct PlanState *lefttree; /* input plan tree(s) */ struct PlanState *righttree; List *initPlan; /* Init SubPlanState nodes (un-correlated expr * subselects) */ List *subPlan; /* SubPlanState nodes in my expressions */ /* * State for management of parameter-change-driven rescanning */ Bitmapset *chgParam; /* set of IDs of changed Params */ /* * Other run-time state needed by most if not all node types. */ TupleTableSlot *ps_ResultTupleSlot; /* slot for my result tuples */ ExprContext *ps_ExprContext; /* node's expression-evaluation context */ ProjectionInfo *ps_ProjInfo; /* info for doing tuple projection */ bool ps_TupFromTlist;/* state flag for processing set-valued * functions in targetlist */ } PlanState; /* ---------------- * these are defined to avoid confusion problems with "left" * and "right" and "inner" and "outer". The convention is that * the "left" plan is the "outer" plan and the "right" plan is * the inner plan, but these make the code more readable. * ---------------- */ #define innerPlanState(node) (((PlanState *)(node))->righttree) #define outerPlanState(node) (((PlanState *)(node))->lefttree) /* Macros for inline access to certain instrumentation counters */ #define InstrCountFiltered1(node, delta) \ do { \ if (((PlanState *)(node))->instrument) \ ((PlanState *)(node))->instrument->nfiltered1 += (delta); \ } while(0) #define InstrCountFiltered2(node, delta) \ do { \ if (((PlanState *)(node))->instrument) \ ((PlanState *)(node))->instrument->nfiltered2 += (delta); \ } while(0) /* * EPQState is state for executing an EvalPlanQual recheck on a candidate * tuple in ModifyTable or LockRows. The estate and planstate fields are * NULL if inactive. */ typedef struct EPQState { EState *estate; /* subsidiary EState */ PlanState *planstate; /* plan state tree ready to be executed */ TupleTableSlot *origslot; /* original output tuple to be rechecked */ Plan *plan; /* plan tree to be executed */ List *arowMarks; /* ExecAuxRowMarks (non-locking only) */ int epqParam; /* ID of Param to force scan node re-eval */ } EPQState; /* ---------------- * ResultState information * ---------------- */ typedef struct ResultState { PlanState ps; /* its first field is NodeTag */ ExprState *resconstantqual; bool rs_done; /* are we done? */ bool rs_checkqual; /* do we need to check the qual? */ } ResultState; /* ---------------- * ModifyTableState information * ---------------- */ typedef struct ModifyTableState { PlanState ps; /* its first field is NodeTag */ CmdType operation; /* INSERT, UPDATE, or DELETE */ bool canSetTag; /* do we set the command tag/es_processed? */ bool mt_done; /* are we done? */ PlanState **mt_plans; /* subplans (one per target rel) */ int mt_nplans; /* number of plans in the array */ int mt_whichplan; /* which one is being executed (0..n-1) */ ResultRelInfo *resultRelInfo; /* per-subplan target relations */ List **mt_arowmarks; /* per-subplan ExecAuxRowMark lists */ EPQState mt_epqstate; /* for evaluating EvalPlanQual rechecks */ bool fireBSTriggers; /* do we need to fire stmt triggers? */ OnConflictAction mt_onconflict; /* ON CONFLICT type */ List *mt_arbiterindexes; /* unique index OIDs to arbitrate * taking alt path */ TupleTableSlot *mt_existing; /* slot to store existing target tuple in */ List *mt_excludedtlist; /* the excluded pseudo relation's * tlist */ TupleTableSlot *mt_conflproj; /* CONFLICT ... SET ... projection * target */ } ModifyTableState; /* ---------------- * AppendState information * * nplans how many plans are in the array * whichplan which plan is being executed (0 .. n-1) * ---------------- */ typedef struct AppendState { PlanState ps; /* its first field is NodeTag */ PlanState **appendplans; /* array of PlanStates for my inputs */ int as_nplans; int as_whichplan; } AppendState; /* ---------------- * MergeAppendState information * * nplans how many plans are in the array * nkeys number of sort key columns * sortkeys sort keys in SortSupport representation * slots current output tuple of each subplan * heap heap of active tuples * initialized true if we have fetched first tuple from each subplan * ---------------- */ typedef struct MergeAppendState { PlanState ps; /* its first field is NodeTag */ PlanState **mergeplans; /* array of PlanStates for my inputs */ int ms_nplans; int ms_nkeys; SortSupport ms_sortkeys; /* array of length ms_nkeys */ TupleTableSlot **ms_slots; /* array of length ms_nplans */ struct binaryheap *ms_heap; /* binary heap of slot indices */ bool ms_initialized; /* are subplans started? */ } MergeAppendState; /* ---------------- * RecursiveUnionState information * * RecursiveUnionState is used for performing a recursive union. * * recursing T when we're done scanning the non-recursive term * intermediate_empty T if intermediate_table is currently empty * working_table working table (to be scanned by recursive term) * intermediate_table current recursive output (next generation of WT) * ---------------- */ typedef struct RecursiveUnionState { PlanState ps; /* its first field is NodeTag */ bool recursing; bool intermediate_empty; Tuplestorestate *working_table; Tuplestorestate *intermediate_table; /* Remaining fields are unused in UNION ALL case */ FmgrInfo *eqfunctions; /* per-grouping-field equality fns */ FmgrInfo *hashfunctions; /* per-grouping-field hash fns */ MemoryContext tempContext; /* short-term context for comparisons */ TupleHashTable hashtable; /* hash table for tuples already seen */ MemoryContext tableContext; /* memory context containing hash table */ } RecursiveUnionState; /* ---------------- * BitmapAndState information * ---------------- */ typedef struct BitmapAndState { PlanState ps; /* its first field is NodeTag */ PlanState **bitmapplans; /* array of PlanStates for my inputs */ int nplans; /* number of input plans */ } BitmapAndState; /* ---------------- * BitmapOrState information * ---------------- */ typedef struct BitmapOrState { PlanState ps; /* its first field is NodeTag */ PlanState **bitmapplans; /* array of PlanStates for my inputs */ int nplans; /* number of input plans */ } BitmapOrState; /* ---------------------------------------------------------------- * Scan State Information * ---------------------------------------------------------------- */ /* ---------------- * ScanState information * * ScanState extends PlanState for node types that represent * scans of an underlying relation. It can also be used for nodes * that scan the output of an underlying plan node --- in that case, * only ScanTupleSlot is actually useful, and it refers to the tuple * retrieved from the subplan. * * currentRelation relation being scanned (NULL if none) * currentScanDesc current scan descriptor for scan (NULL if none) * ScanTupleSlot pointer to slot in tuple table holding scan tuple * ---------------- */ typedef struct ScanState { PlanState ps; /* its first field is NodeTag */ Relation ss_currentRelation; HeapScanDesc ss_currentScanDesc; TupleTableSlot *ss_ScanTupleSlot; } ScanState; /* * SeqScan uses a bare ScanState as its state node, since it needs * no additional fields. */ typedef ScanState SeqScanState; /* ---------------- * SampleScanState information * ---------------- */ typedef struct SampleScanState { ScanState ss; List *args; /* expr states for TABLESAMPLE params */ ExprState *repeatable; /* expr state for REPEATABLE expr */ /* use struct pointer to avoid including tsmapi.h here */ struct TsmRoutine *tsmroutine; /* descriptor for tablesample method */ void *tsm_state; /* tablesample method can keep state here */ bool use_bulkread; /* use bulkread buffer access strategy? */ bool use_pagemode; /* use page-at-a-time visibility checking? */ bool begun; /* false means need to call BeginSampleScan */ uint32 seed; /* random seed */ } SampleScanState; /* * These structs store information about index quals that don't have simple * constant right-hand sides. See comments for ExecIndexBuildScanKeys() * for discussion. */ typedef struct { ScanKey scan_key; /* scankey to put value into */ ExprState *key_expr; /* expr to evaluate to get value */ bool key_toastable; /* is expr's result a toastable datatype? */ } IndexRuntimeKeyInfo; typedef struct { ScanKey scan_key; /* scankey to put value into */ ExprState *array_expr; /* expr to evaluate to get array value */ int next_elem; /* next array element to use */ int num_elems; /* number of elems in current array value */ Datum *elem_values; /* array of num_elems Datums */ bool *elem_nulls; /* array of num_elems is-null flags */ } IndexArrayKeyInfo; /* ---------------- * IndexScanState information * * indexqualorig execution state for indexqualorig expressions * indexorderbyorig execution state for indexorderbyorig expressions * ScanKeys Skey structures for index quals * NumScanKeys number of ScanKeys * OrderByKeys Skey structures for index ordering operators * NumOrderByKeys number of OrderByKeys * RuntimeKeys info about Skeys that must be evaluated at runtime * NumRuntimeKeys number of RuntimeKeys * RuntimeKeysReady true if runtime Skeys have been computed * RuntimeContext expr context for evaling runtime Skeys * RelationDesc index relation descriptor * ScanDesc index scan descriptor * * ReorderQueue tuples that need reordering due to re-check * ReachedEnd have we fetched all tuples from index already? * OrderByValues values of ORDER BY exprs of last fetched tuple * OrderByNulls null flags for OrderByValues * SortSupport for reordering ORDER BY exprs * OrderByTypByVals is the datatype of order by expression pass-by-value? * OrderByTypLens typlens of the datatypes of order by expressions * ---------------- */ typedef struct IndexScanState { ScanState ss; /* its first field is NodeTag */ List *indexqualorig; List *indexorderbyorig; ScanKey iss_ScanKeys; int iss_NumScanKeys; ScanKey iss_OrderByKeys; int iss_NumOrderByKeys; IndexRuntimeKeyInfo *iss_RuntimeKeys; int iss_NumRuntimeKeys; bool iss_RuntimeKeysReady; ExprContext *iss_RuntimeContext; Relation iss_RelationDesc; IndexScanDesc iss_ScanDesc; /* These are needed for re-checking ORDER BY expr ordering */ pairingheap *iss_ReorderQueue; bool iss_ReachedEnd; Datum *iss_OrderByValues; bool *iss_OrderByNulls; SortSupport iss_SortSupport; bool *iss_OrderByTypByVals; int16 *iss_OrderByTypLens; } IndexScanState; /* ---------------- * IndexOnlyScanState information * * indexqual execution state for indexqual expressions * ScanKeys Skey structures for index quals * NumScanKeys number of ScanKeys * OrderByKeys Skey structures for index ordering operators * NumOrderByKeys number of OrderByKeys * RuntimeKeys info about Skeys that must be evaluated at runtime * NumRuntimeKeys number of RuntimeKeys * RuntimeKeysReady true if runtime Skeys have been computed * RuntimeContext expr context for evaling runtime Skeys * RelationDesc index relation descriptor * ScanDesc index scan descriptor * VMBuffer buffer in use for visibility map testing, if any * HeapFetches number of tuples we were forced to fetch from heap * ---------------- */ typedef struct IndexOnlyScanState { ScanState ss; /* its first field is NodeTag */ List *indexqual; ScanKey ioss_ScanKeys; int ioss_NumScanKeys; ScanKey ioss_OrderByKeys; int ioss_NumOrderByKeys; IndexRuntimeKeyInfo *ioss_RuntimeKeys; int ioss_NumRuntimeKeys; bool ioss_RuntimeKeysReady; ExprContext *ioss_RuntimeContext; Relation ioss_RelationDesc; IndexScanDesc ioss_ScanDesc; Buffer ioss_VMBuffer; long ioss_HeapFetches; } IndexOnlyScanState; /* ---------------- * BitmapIndexScanState information * * result bitmap to return output into, or NULL * ScanKeys Skey structures for index quals * NumScanKeys number of ScanKeys * RuntimeKeys info about Skeys that must be evaluated at runtime * NumRuntimeKeys number of RuntimeKeys * ArrayKeys info about Skeys that come from ScalarArrayOpExprs * NumArrayKeys number of ArrayKeys * RuntimeKeysReady true if runtime Skeys have been computed * RuntimeContext expr context for evaling runtime Skeys * RelationDesc index relation descriptor * ScanDesc index scan descriptor * ---------------- */ typedef struct BitmapIndexScanState { ScanState ss; /* its first field is NodeTag */ TIDBitmap *biss_result; ScanKey biss_ScanKeys; int biss_NumScanKeys; IndexRuntimeKeyInfo *biss_RuntimeKeys; int biss_NumRuntimeKeys; IndexArrayKeyInfo *biss_ArrayKeys; int biss_NumArrayKeys; bool biss_RuntimeKeysReady; ExprContext *biss_RuntimeContext; Relation biss_RelationDesc; IndexScanDesc biss_ScanDesc; } BitmapIndexScanState; /* ---------------- * BitmapHeapScanState information * * bitmapqualorig execution state for bitmapqualorig expressions * tbm bitmap obtained from child index scan(s) * tbmiterator iterator for scanning current pages * tbmres current-page data * exact_pages total number of exact pages retrieved * lossy_pages total number of lossy pages retrieved * prefetch_iterator iterator for prefetching ahead of current page * prefetch_pages # pages prefetch iterator is ahead of current * prefetch_target target prefetch distance * ---------------- */ typedef struct BitmapHeapScanState { ScanState ss; /* its first field is NodeTag */ List *bitmapqualorig; TIDBitmap *tbm; TBMIterator *tbmiterator; TBMIterateResult *tbmres; long exact_pages; long lossy_pages; TBMIterator *prefetch_iterator; int prefetch_pages; int prefetch_target; } BitmapHeapScanState; /* ---------------- * TidScanState information * * isCurrentOf scan has a CurrentOfExpr qual * NumTids number of tids in this scan * TidPtr index of currently fetched tid * TidList evaluated item pointers (array of size NumTids) * ---------------- */ typedef struct TidScanState { ScanState ss; /* its first field is NodeTag */ List *tss_tidquals; /* list of ExprState nodes */ bool tss_isCurrentOf; int tss_NumTids; int tss_TidPtr; ItemPointerData *tss_TidList; HeapTupleData tss_htup; } TidScanState; /* ---------------- * SubqueryScanState information * * SubqueryScanState is used for scanning a sub-query in the range table. * ScanTupleSlot references the current output tuple of the sub-query. * ---------------- */ typedef struct SubqueryScanState { ScanState ss; /* its first field is NodeTag */ PlanState *subplan; } SubqueryScanState; /* ---------------- * FunctionScanState information * * Function nodes are used to scan the results of a * function appearing in FROM (typically a function returning set). * * eflags node's capability flags * ordinality is this scan WITH ORDINALITY? * simple true if we have 1 function and no ordinality * ordinal current ordinal column value * nfuncs number of functions being executed * funcstates per-function execution states (private in * nodeFunctionscan.c) * argcontext memory context to evaluate function arguments in * ---------------- */ struct FunctionScanPerFuncState; typedef struct FunctionScanState { ScanState ss; /* its first field is NodeTag */ int eflags; bool ordinality; bool simple; int64 ordinal; int nfuncs; struct FunctionScanPerFuncState *funcstates; /* array of length * nfuncs */ MemoryContext argcontext; } FunctionScanState; /* ---------------- * ValuesScanState information * * ValuesScan nodes are used to scan the results of a VALUES list * * rowcontext per-expression-list context * exprlists array of expression lists being evaluated * array_len size of array * curr_idx current array index (0-based) * * Note: ss.ps.ps_ExprContext is used to evaluate any qual or projection * expressions attached to the node. We create a second ExprContext, * rowcontext, in which to build the executor expression state for each * Values sublist. Resetting this context lets us get rid of expression * state for each row, avoiding major memory leakage over a long values list. * ---------------- */ typedef struct ValuesScanState { ScanState ss; /* its first field is NodeTag */ ExprContext *rowcontext; List **exprlists; int array_len; int curr_idx; } ValuesScanState; /* ---------------- * CteScanState information * * CteScan nodes are used to scan a CommonTableExpr query. * * Multiple CteScan nodes can read out from the same CTE query. We use * a tuplestore to hold rows that have been read from the CTE query but * not yet consumed by all readers. * ---------------- */ typedef struct CteScanState { ScanState ss; /* its first field is NodeTag */ int eflags; /* capability flags to pass to tuplestore */ int readptr; /* index of my tuplestore read pointer */ PlanState *cteplanstate; /* PlanState for the CTE query itself */ /* Link to the "leader" CteScanState (possibly this same node) */ struct CteScanState *leader; /* The remaining fields are only valid in the "leader" CteScanState */ Tuplestorestate *cte_table; /* rows already read from the CTE query */ bool eof_cte; /* reached end of CTE query? */ } CteScanState; /* ---------------- * WorkTableScanState information * * WorkTableScan nodes are used to scan the work table created by * a RecursiveUnion node. We locate the RecursiveUnion node * during executor startup. * ---------------- */ typedef struct WorkTableScanState { ScanState ss; /* its first field is NodeTag */ RecursiveUnionState *rustate; } WorkTableScanState; /* ---------------- * ForeignScanState information * * ForeignScan nodes are used to scan foreign-data tables. * ---------------- */ typedef struct ForeignScanState { ScanState ss; /* its first field is NodeTag */ List *fdw_recheck_quals; /* original quals not in ss.ps.qual */ /* use struct pointer to avoid including fdwapi.h here */ struct FdwRoutine *fdwroutine; void *fdw_state; /* foreign-data wrapper can keep state here */ } ForeignScanState; /* ---------------- * CustomScanState information * * CustomScan nodes are used to execute custom code within executor. * * Core code must avoid assuming that the CustomScanState is only as large as * the structure declared here; providers are allowed to make it the first * element in a larger structure, and typically would need to do so. The * struct is actually allocated by the CreateCustomScanState method associated * with the plan node. Any additional fields can be initialized there, or in * the BeginCustomScan method. * ---------------- */ struct ExplainState; /* avoid including explain.h here */ struct CustomScanState; typedef struct CustomExecMethods { const char *CustomName; /* Executor methods: mark/restore are optional, the rest are required */ void (*BeginCustomScan) (struct CustomScanState *node, EState *estate, int eflags); TupleTableSlot *(*ExecCustomScan) (struct CustomScanState *node); void (*EndCustomScan) (struct CustomScanState *node); void (*ReScanCustomScan) (struct CustomScanState *node); void (*MarkPosCustomScan) (struct CustomScanState *node); void (*RestrPosCustomScan) (struct CustomScanState *node); /* Optional: print additional information in EXPLAIN */ void (*ExplainCustomScan) (struct CustomScanState *node, List *ancestors, struct ExplainState *es); } CustomExecMethods; typedef struct CustomScanState { ScanState ss; uint32 flags; /* mask of CUSTOMPATH_* flags, see relation.h */ List *custom_ps; /* list of child PlanState nodes, if any */ const CustomExecMethods *methods; } CustomScanState; /* ---------------------------------------------------------------- * Join State Information * ---------------------------------------------------------------- */ /* ---------------- * JoinState information * * Superclass for state nodes of join plans. * ---------------- */ typedef struct JoinState { PlanState ps; JoinType jointype; List *joinqual; /* JOIN quals (in addition to ps.qual) */ } JoinState; /* ---------------- * NestLoopState information * * NeedNewOuter true if need new outer tuple on next call * MatchedOuter true if found a join match for current outer tuple * NullInnerTupleSlot prepared null tuple for left outer joins * ---------------- */ typedef struct NestLoopState { JoinState js; /* its first field is NodeTag */ bool nl_NeedNewOuter; bool nl_MatchedOuter; TupleTableSlot *nl_NullInnerTupleSlot; } NestLoopState; /* ---------------- * MergeJoinState information * * NumClauses number of mergejoinable join clauses * Clauses info for each mergejoinable clause * JoinState current state of ExecMergeJoin state machine * ExtraMarks true to issue extra Mark operations on inner scan * ConstFalseJoin true if we have a constant-false joinqual * FillOuter true if should emit unjoined outer tuples anyway * FillInner true if should emit unjoined inner tuples anyway * MatchedOuter true if found a join match for current outer tuple * MatchedInner true if found a join match for current inner tuple * OuterTupleSlot slot in tuple table for cur outer tuple * InnerTupleSlot slot in tuple table for cur inner tuple * MarkedTupleSlot slot in tuple table for marked tuple * NullOuterTupleSlot prepared null tuple for right outer joins * NullInnerTupleSlot prepared null tuple for left outer joins * OuterEContext workspace for computing outer tuple's join values * InnerEContext workspace for computing inner tuple's join values * ---------------- */ /* private in nodeMergejoin.c: */ typedef struct MergeJoinClauseData *MergeJoinClause; typedef struct MergeJoinState { JoinState js; /* its first field is NodeTag */ int mj_NumClauses; MergeJoinClause mj_Clauses; /* array of length mj_NumClauses */ int mj_JoinState; bool mj_ExtraMarks; bool mj_ConstFalseJoin; bool mj_FillOuter; bool mj_FillInner; bool mj_MatchedOuter; bool mj_MatchedInner; TupleTableSlot *mj_OuterTupleSlot; TupleTableSlot *mj_InnerTupleSlot; TupleTableSlot *mj_MarkedTupleSlot; TupleTableSlot *mj_NullOuterTupleSlot; TupleTableSlot *mj_NullInnerTupleSlot; ExprContext *mj_OuterEContext; ExprContext *mj_InnerEContext; } MergeJoinState; /* ---------------- * HashJoinState information * * hashclauses original form of the hashjoin condition * hj_OuterHashKeys the outer hash keys in the hashjoin condition * hj_InnerHashKeys the inner hash keys in the hashjoin condition * hj_HashOperators the join operators in the hashjoin condition * hj_HashTable hash table for the hashjoin * (NULL if table not built yet) * hj_CurHashValue hash value for current outer tuple * hj_CurBucketNo regular bucket# for current outer tuple * hj_CurSkewBucketNo skew bucket# for current outer tuple * hj_CurTuple last inner tuple matched to current outer * tuple, or NULL if starting search * (hj_CurXXX variables are undefined if * OuterTupleSlot is empty!) * hj_OuterTupleSlot tuple slot for outer tuples * hj_HashTupleSlot tuple slot for inner (hashed) tuples * hj_NullOuterTupleSlot prepared null tuple for right/full outer joins * hj_NullInnerTupleSlot prepared null tuple for left/full outer joins * hj_FirstOuterTupleSlot first tuple retrieved from outer plan * hj_JoinState current state of ExecHashJoin state machine * hj_MatchedOuter true if found a join match for current outer * hj_OuterNotEmpty true if outer relation known not empty * ---------------- */ /* these structs are defined in executor/hashjoin.h: */ typedef struct HashJoinTupleData *HashJoinTuple; typedef struct HashJoinTableData *HashJoinTable; typedef struct HashJoinState { JoinState js; /* its first field is NodeTag */ List *hashclauses; /* list of ExprState nodes */ List *hj_OuterHashKeys; /* list of ExprState nodes */ List *hj_InnerHashKeys; /* list of ExprState nodes */ List *hj_HashOperators; /* list of operator OIDs */ HashJoinTable hj_HashTable; uint32 hj_CurHashValue; int hj_CurBucketNo; int hj_CurSkewBucketNo; HashJoinTuple hj_CurTuple; TupleTableSlot *hj_OuterTupleSlot; TupleTableSlot *hj_HashTupleSlot; TupleTableSlot *hj_NullOuterTupleSlot; TupleTableSlot *hj_NullInnerTupleSlot; TupleTableSlot *hj_FirstOuterTupleSlot; int hj_JoinState; bool hj_MatchedOuter; bool hj_OuterNotEmpty; } HashJoinState; /* ---------------------------------------------------------------- * Materialization State Information * ---------------------------------------------------------------- */ /* ---------------- * MaterialState information * * materialize nodes are used to materialize the results * of a subplan into a temporary file. * * ss.ss_ScanTupleSlot refers to output of underlying plan. * ---------------- */ typedef struct MaterialState { ScanState ss; /* its first field is NodeTag */ int eflags; /* capability flags to pass to tuplestore */ bool eof_underlying; /* reached end of underlying plan? */ Tuplestorestate *tuplestorestate; } MaterialState; /* ---------------- * SortState information * ---------------- */ typedef struct SortState { ScanState ss; /* its first field is NodeTag */ bool randomAccess; /* need random access to sort output? */ bool bounded; /* is the result set bounded? */ int64 bound; /* if bounded, how many tuples are needed */ bool sort_Done; /* sort completed yet? */ bool bounded_Done; /* value of bounded we did the sort with */ int64 bound_Done; /* value of bound we did the sort with */ void *tuplesortstate; /* private state of tuplesort.c */ } SortState; /* --------------------- * GroupState information * ------------------------- */ typedef struct GroupState { ScanState ss; /* its first field is NodeTag */ FmgrInfo *eqfunctions; /* per-field lookup data for equality fns */ bool grp_done; /* indicates completion of Group scan */ } GroupState; /* --------------------- * AggState information * * ss.ss_ScanTupleSlot refers to output of underlying plan. * * Note: ss.ps.ps_ExprContext contains ecxt_aggvalues and * ecxt_aggnulls arrays, which hold the computed agg values for the current * input group during evaluation of an Agg node's output tuple(s). We * create a second ExprContext, tmpcontext, in which to evaluate input * expressions and run the aggregate transition functions. * ------------------------- */ /* these structs are private in nodeAgg.c: */ typedef struct AggStatePerAggData *AggStatePerAgg; typedef struct AggStatePerGroupData *AggStatePerGroup; typedef struct AggStatePerPhaseData *AggStatePerPhase; typedef struct AggState { ScanState ss; /* its first field is NodeTag */ List *aggs; /* all Aggref nodes in targetlist & quals */ int numaggs; /* length of list (could be zero!) */ AggStatePerPhase phase; /* pointer to current phase data */ int numphases; /* number of phases */ int current_phase; /* current phase number */ FmgrInfo *hashfunctions; /* per-grouping-field hash fns */ AggStatePerAgg peragg; /* per-Aggref information */ ExprContext **aggcontexts; /* econtexts for long-lived data (per GS) */ ExprContext *tmpcontext; /* econtext for input expressions */ AggStatePerAgg curperagg; /* identifies currently active aggregate */ bool input_done; /* indicates end of input */ bool agg_done; /* indicates completion of Agg scan */ int projected_set; /* The last projected grouping set */ int current_set; /* The current grouping set being evaluated */ Bitmapset *grouped_cols; /* grouped cols in current projection */ List *all_grouped_cols; /* list of all grouped cols in DESC * order */ /* These fields are for grouping set phase data */ int maxsets; /* The max number of sets in any phase */ AggStatePerPhase phases; /* array of all phases */ Tuplesortstate *sort_in; /* sorted input to phases > 0 */ Tuplesortstate *sort_out; /* input is copied here for next phase */ TupleTableSlot *sort_slot; /* slot for sort results */ /* these fields are used in AGG_PLAIN and AGG_SORTED modes: */ AggStatePerGroup pergroup; /* per-Aggref-per-group working state */ HeapTuple grp_firstTuple; /* copy of first tuple of current group */ /* these fields are used in AGG_HASHED mode: */ TupleHashTable hashtable; /* hash table with one entry per group */ TupleTableSlot *hashslot; /* slot for loading hash table */ List *hash_needed; /* list of columns needed in hash table */ bool table_filled; /* hash table filled yet? */ TupleHashIterator hashiter; /* for iterating through hash table */ } AggState; /* ---------------- * WindowAggState information * ---------------- */ /* these structs are private in nodeWindowAgg.c: */ typedef struct WindowStatePerFuncData *WindowStatePerFunc; typedef struct WindowStatePerAggData *WindowStatePerAgg; typedef struct WindowAggState { ScanState ss; /* its first field is NodeTag */ /* these fields are filled in by ExecInitExpr: */ List *funcs; /* all WindowFunc nodes in targetlist */ int numfuncs; /* total number of window functions */ int numaggs; /* number that are plain aggregates */ WindowStatePerFunc perfunc; /* per-window-function information */ WindowStatePerAgg peragg; /* per-plain-aggregate information */ FmgrInfo *partEqfunctions; /* equality funcs for partition columns */ FmgrInfo *ordEqfunctions; /* equality funcs for ordering columns */ Tuplestorestate *buffer; /* stores rows of current partition */ int current_ptr; /* read pointer # for current */ int64 spooled_rows; /* total # of rows in buffer */ int64 currentpos; /* position of current row in partition */ int64 frameheadpos; /* current frame head position */ int64 frametailpos; /* current frame tail position */ /* use struct pointer to avoid including windowapi.h here */ struct WindowObjectData *agg_winobj; /* winobj for aggregate * fetches */ int64 aggregatedbase; /* start row for current aggregates */ int64 aggregatedupto; /* rows before this one are aggregated */ int frameOptions; /* frame_clause options, see WindowDef */ ExprState *startOffset; /* expression for starting bound offset */ ExprState *endOffset; /* expression for ending bound offset */ Datum startOffsetValue; /* result of startOffset evaluation */ Datum endOffsetValue; /* result of endOffset evaluation */ MemoryContext partcontext; /* context for partition-lifespan data */ MemoryContext aggcontext; /* shared context for aggregate working data */ MemoryContext curaggcontext; /* current aggregate's working data */ ExprContext *tmpcontext; /* short-term evaluation context */ bool all_first; /* true if the scan is starting */ bool all_done; /* true if the scan is finished */ bool partition_spooled; /* true if all tuples in current * partition have been spooled into * tuplestore */ bool more_partitions;/* true if there's more partitions after this * one */ bool framehead_valid;/* true if frameheadpos is known up to date * for current row */ bool frametail_valid;/* true if frametailpos is known up to date * for current row */ TupleTableSlot *first_part_slot; /* first tuple of current or next * partition */ /* temporary slots for tuples fetched back from tuplestore */ TupleTableSlot *agg_row_slot; TupleTableSlot *temp_slot_1; TupleTableSlot *temp_slot_2; } WindowAggState; /* ---------------- * UniqueState information * * Unique nodes are used "on top of" sort nodes to discard * duplicate tuples returned from the sort phase. Basically * all it does is compare the current tuple from the subplan * with the previously fetched tuple (stored in its result slot). * If the two are identical in all interesting fields, then * we just fetch another tuple from the sort and try again. * ---------------- */ typedef struct UniqueState { PlanState ps; /* its first field is NodeTag */ FmgrInfo *eqfunctions; /* per-field lookup data for equality fns */ MemoryContext tempContext; /* short-term context for comparisons */ } UniqueState; /* ---------------- * HashState information * ---------------- */ typedef struct HashState { PlanState ps; /* its first field is NodeTag */ HashJoinTable hashtable; /* hash table for the hashjoin */ List *hashkeys; /* list of ExprState nodes */ /* hashkeys is same as parent's hj_InnerHashKeys */ } HashState; /* ---------------- * SetOpState information * * Even in "sorted" mode, SetOp nodes are more complex than a simple * Unique, since we have to count how many duplicates to return. But * we also support hashing, so this is really more like a cut-down * form of Agg. * ---------------- */ /* this struct is private in nodeSetOp.c: */ typedef struct SetOpStatePerGroupData *SetOpStatePerGroup; typedef struct SetOpState { PlanState ps; /* its first field is NodeTag */ FmgrInfo *eqfunctions; /* per-grouping-field equality fns */ FmgrInfo *hashfunctions; /* per-grouping-field hash fns */ bool setop_done; /* indicates completion of output scan */ long numOutput; /* number of dups left to output */ MemoryContext tempContext; /* short-term context for comparisons */ /* these fields are used in SETOP_SORTED mode: */ SetOpStatePerGroup pergroup; /* per-group working state */ HeapTuple grp_firstTuple; /* copy of first tuple of current group */ /* these fields are used in SETOP_HASHED mode: */ TupleHashTable hashtable; /* hash table with one entry per group */ MemoryContext tableContext; /* memory context containing hash table */ bool table_filled; /* hash table filled yet? */ TupleHashIterator hashiter; /* for iterating through hash table */ } SetOpState; /* ---------------- * LockRowsState information * * LockRows nodes are used to enforce FOR [KEY] UPDATE/SHARE locking. * ---------------- */ typedef struct LockRowsState { PlanState ps; /* its first field is NodeTag */ List *lr_arowMarks; /* List of ExecAuxRowMarks */ EPQState lr_epqstate; /* for evaluating EvalPlanQual rechecks */ HeapTuple *lr_curtuples; /* locked tuples (one entry per RT entry) */ int lr_ntables; /* length of lr_curtuples[] array */ } LockRowsState; /* ---------------- * LimitState information * * Limit nodes are used to enforce LIMIT/OFFSET clauses. * They just select the desired subrange of their subplan's output. * * offset is the number of initial tuples to skip (0 does nothing). * count is the number of tuples to return after skipping the offset tuples. * If no limit count was specified, count is undefined and noCount is true. * When lstate == LIMIT_INITIAL, offset/count/noCount haven't been set yet. * ---------------- */ typedef enum { LIMIT_INITIAL, /* initial state for LIMIT node */ LIMIT_RESCAN, /* rescan after recomputing parameters */ LIMIT_EMPTY, /* there are no returnable rows */ LIMIT_INWINDOW, /* have returned a row in the window */ LIMIT_SUBPLANEOF, /* at EOF of subplan (within window) */ LIMIT_WINDOWEND, /* stepped off end of window */ LIMIT_WINDOWSTART /* stepped off beginning of window */ } LimitStateCond; typedef struct LimitState { PlanState ps; /* its first field is NodeTag */ ExprState *limitOffset; /* OFFSET parameter, or NULL if none */ ExprState *limitCount; /* COUNT parameter, or NULL if none */ int64 offset; /* current OFFSET value */ int64 count; /* current COUNT, if any */ bool noCount; /* if true, ignore count */ LimitStateCond lstate; /* state machine status, as above */ int64 position; /* 1-based index of last tuple returned */ TupleTableSlot *subSlot; /* tuple last obtained from subplan */ } LimitState; #endif /* EXECNODES_H */