{-# LANGUAGE MagicHash, BangPatterns, NamedFieldPuns, ViewPatterns, FlexibleInstances, TypeFamilies, FlexibleContexts #-} {-# OPTIONS -fno-warn-overlapping-patterns -fno-warn-name-shadowing #-} {- | An alternate implementation of a priority queue based on a /Fibonacci heap/. Fibonacci heaps, while not quite as internally functional as pairing heaps, are generally less ad-hoc and may prove useful for some uses (as well as serving as a useful testbed). A Fibonacci heap can be thought of as a lazier binomial heap, designed to better take advantage of the fact that in a lazy language a series of modification operations will likely all be computed at once, preferably as late as possible. The Fibonacci heap supports all 'Queuelike' operations with the same time complexity as 'PQueue'. -} module Data.Queue.FibQueue (FQueue) where import Data.Queue.Class import Data.Queue.QueueHelpers(order) import Control.Monad.Array import Data.Maybe import Data.Monoid import Data.Ord import Control.Monad data RkTree e = RkT {treeRk :: {-# UNPACK #-} !Int, treeMin :: e, _subForest :: [RkTree e]} data FForest e = FF {_maxRk :: {-# UNPACK #-} !Int, trees :: [RkTree e]} data FQueue e = FQ {elts :: {-# UNPACK #-} !Int, forest :: {-# UNPACK #-} !(FForest e)} instance Ord e => Monoid (FQueue e) where mempty = FQ 0 emptyFF FQ n1 f1 `mappend` FQ n2 f2 = FQ (n1 + n2) (f1 `mergeFF` f2) emptyFF :: FForest e emptyFF = FF 0 [] singleFF :: RkTree e -> FForest e singleFF t@RkT{treeRk} = FF treeRk [t] {-# INLINE mergeFF #-} mergeFF :: Ord e => FForest e -> FForest e -> FForest e FF r1 ts1 `mergeFF` FF r2 ts2 = let (f1, f2) = order cmp ts1 ts2 in FF (r1 `max` r2) (f1 ++ f2) where (t1:_) `cmp` (t2:_) = comparing treeMin t1 t2 [] `cmp` _ = LT _ `cmp` [] = GT extractFF :: Ord e => FForest e -> Maybe (e, FForest e) extractFF f = do FF rk (RkT _ x ts : tss) <- return f return (x, rebuild $ FF rk (ts ++ tss)) instance Ord e => Queuelike (FQueue e) where type QueueKey (FQueue e) = e merge = mappend empty = mempty singleton x = FQ 1 $ singleFF (RkT 0 x []) toList_ FQ{forest} = concatMap flatten (trees forest) size = elts extract (FQ n f) = fmap (fmap (FQ (n-1))) (extractFF f) {-# INLINE flatten #-} flatten :: RkTree e -> [e] flatten (RkT _ x ts) = [x] ++ concatMap flatten ts meldTree :: Ord e => RkTree e -> RkTree e -> RkTree e t1@(RkT d x1 ts1) `meldTree` t2@(RkT _ x2 ts2) | x1 <= x2 = RkT (d+1) x1 (t2:ts1) | otherwise = RkT (d+1) x2 (t1:ts2) -- The use of the ArrayM monad here considerably increases readability and efficiency. meld :: Ord e => RkTree e -> ArrayM s (Maybe (RkTree e)) () meld t@RkT{treeRk} = ensureSize (treeRk+2) >> readAt treeRk >>= maybe (writeAt treeRk (Just t)) (\ t' -> writeAt treeRk Nothing >> meld (t `meldTree` t')) {-# INLINE findMin #-} findMin :: Ord e => [RkTree e] -> FForest e findMin = foldr (mergeFF . singleFF) emptyFF {-# INLINE rebuild #-} rebuild :: Ord e => FForest e -> FForest e rebuild (FF rk ts) = runArrayM (rk + 1) Nothing $ mapM_ meld ts >> liftM (\ ts' -> findMin (catMaybes ts')) askElems -- fromPow2List :: Ord e => Int -> [e] -> RkTree e -- fromPow2List n ts = meldList 1 (map (\ x -> RkT 0 x []) ts) where -- fuse2 (t1:t2:ts) = t1 `meldTree` t2 : fuse2 ts -- fuse2 ts = ts -- meldList p ts | p < n = meldList (p + p) (fuse2 ts) -- | otherwise = head ts -- -- fromListFQ :: Ord e => Int -> [e] -> [RkTree e] -- fromListFQ 0 _ = [] -- fromListFQ n ts = let p = bit (intLog n); (ts1, ts2) = splitAt p ts in fromPow2List p ts1 : fromListFQ (n-p) ts2 -- -- intLog :: Int -> Int -- intLog 0 = 0 -- intLog 1 = 0 -- intLog (I# x) = {-# SCC "intLog" #-} I# (intLog1 (int2Word# x)) where -- intLog1 x# = let ans# = uncheckedShiftRL# x# 16# in if ans# `eqWord#` 0## then intLog2 x# else 16# +# intLog2 ans# -- intLog2 x# = let ans# = uncheckedShiftRL# x# 8# in if ans# `eqWord#` 0## then intLog3 x# else 8# +# intLog3 ans# -- intLog3 x# = let ans# = uncheckedShiftRL# x# 4# in if ans# `eqWord#` 0## then intLog4 x# else 4# +# intLog4 ans# -- intLog4 x# = let ans# = uncheckedShiftRL# x# 2# in if ans# `eqWord#` 0## then intLog5 x# else 2# +# intLog5 ans# -- intLog5 x# = if x# `leWord#` 1## then 0# else 1#