{-# OPTIONS -Wall #-} {-# OPTIONS -Wcompat #-} {-# OPTIONS -Wincomplete-record-updates #-} {-# OPTIONS -Wincomplete-uni-patterns #-} {-# OPTIONS -Wno-redundant-constraints #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE DeriveLift #-} {-# LANGUAGE RoleAnnotations #-} {-# LANGUAGE NoStarIsType #-} -- | -- Refinement type allowing the external type to differ from the internal type -- doesnt store the output value but runs on demand but has calculate each time and could fail later -- see 'Refined1' -- -- @ -- similar to 'Predicate.Refined2.Refined2' but also provides: -- * quickCheck methods -- * ability to combine refinement types -- * a canonical output value using the \'fmt\' parameter -- @ -- module Predicate.Refined1 ( -- ** Refined1 Refined1 , unRefined1 , Refined1C -- ** display results , prtEval1 , prtEval1P , prtEval1IO , prtEval1PIO , prt1IO , prt1Impl , Msg1 (..) , RResults1 (..) -- ** evaluation methods , eval1 , eval1P , eval1M , newRefined1 , newRefined1P -- ** create a wrapped Refined1 value , newRefined1T , newRefined1TP , newRefined1TPIO , withRefined1T , withRefined1TIO , withRefined1TP -- ** proxy methods , mkProxy1 , mkProxy1' , MakeR1 -- ** unsafe methods for creating Refined1 , unsafeRefined1 , unsafeRefined1' -- ** combine Refined1 values , convertRefined1TP , rapply1 , rapply1P -- ** QuickCheck methods , genRefined1 , genRefined1P -- ** emulate Refined1 using Refined , RefinedEmulate , eval1PX , eval1X , type ReplaceOptT1 , type AppendOptT1 ) where import Predicate.Refined import Predicate.Core import Predicate.Util import Data.Functor.Identity (Identity(..)) import Data.Tree import Data.Proxy import Control.Monad.Except import Control.Monad.Writer (tell) import Data.Aeson (ToJSON(..), FromJSON(..)) import qualified Language.Haskell.TH.Syntax as TH import Test.QuickCheck import qualified GHC.Read as GR import qualified Text.ParserCombinators.ReadPrec as PCR import qualified Text.Read.Lex as RL import qualified Data.Binary as B import Data.Binary (Binary) import Data.Maybe (fromMaybe) import Control.Lens ((^.)) import Data.Tree.Lens (root) import Data.Char (isSpace) import Data.String import Data.Hashable (Hashable(..)) import GHC.Stack -- $setup -- >>> :set -XDataKinds -- >>> :set -XTypeApplications -- >>> :set -XTypeOperators -- >>> :set -XOverloadedStrings -- >>> :m + Predicate.Prelude -- >>> :m + Data.Time -- | Refinement type that differentiates the input from output: similar to 'Predicate.Refined3.Refined3' but only creates the output value as needed. -- -- * @opts@ are the display options -- * @ip@ converts @i@ to @PP ip i@ which is the internal type and stored in 'unRefined1' -- * @op@ validates that internal type using @PP op (PP ip i) ~ Bool@ -- * @fmt@ outputs the internal type @PP fmt (PP ip i) ~ i@ (not stored anywhere but created on demand) -- * @i@ is the input type -- -- * @PP fmt (PP ip i)@ should be valid as input for Refined1 -- -- Setting @ip@ to @Id@ and @fmt@ to @Id@ makes it equivalent to 'Refined.Refined': see 'RefinedEmulate' -- -- Setting the input type @i@ to 'GHC.Base.String' resembles the corresponding Read/Show instances but with an additional predicate on the read value -- -- * __read__ a string using /ip/ into an internal type and store in 'unRefined1' -- * __validate__ 'unRefined1' using the predicate /op/ -- * __show__ 'unRefined1' using /fmt/ (does not store the formatted result unlike 'Predicate.Refined3.Refined3') -- -- Although a common scenario is String as input, you are free to choose any input type you like -- -- >>> newRefined1 @'OZ @(ReadBase Int 16 Id) @(Lt 255) @(PrintF "%x" Id) "00fe" -- Right (Refined1 254) -- -- >>> newRefined1 @'OZ @(ReadBase Int 16 Id) @(Lt 253) @(PrintF "%x" Id) "00fe" -- Left "Step 2. False Boolean Check(op) | FalseP" -- -- >>> newRefined1 @'OZ @(ReadBase Int 16 Id) @(Lt 255) @(PrintF "%x" Id) "00fg" -- Left "Step 1. Initial Conversion(ip) Failed | invalid base 16" -- -- >>> newRefined1 @'OL @(Map (ReadP Int Id) (Resplit "\\." Id)) @(Msg "length invalid:" (Len == 4)) @(PrintL 4 "%03d.%03d.%03d.%03d" Id) "198.162.3.1.5" -- Left "Step 2. False Boolean Check(op) | {length invalid:5 == 4}" -- -- >>> newRefined1 @'OZ @(Map (ReadP Int Id) (Resplit "\\." Id)) @(Guard (PrintF "found length=%d" Len) (Len == 4) >> 'True) @(PrintL 4 "%03d.%03d.%03d.%03d" Id) "198.162.3.1.5" -- Left "Step 2. Failed Boolean Check(op) | found length=5" -- -- >>> newRefined1 @'OZ @(Map (ReadP Int Id) (Resplit "\\." Id)) @(Guard (PrintF "found length=%d" Len) (Len == 4) >> 'True) @(PrintL 4 "%03d.%03d.%03d.%03d" Id) "198.162.3.1" -- Right (Refined1 [198,162,3,1]) -- -- >>> :m + Data.Time.Calendar.WeekDate -- >>> newRefined1 @'OZ @(MkDayExtra Id >> 'Just Id) @(Guard "expected a Sunday" (Thd Id == 7) >> 'True) @(UnMkDay (Fst Id)) (2019,10,13) -- Right (Refined1 (2019-10-13,41,7)) -- -- >>> newRefined1 @'OL @(MkDayExtra Id >> 'Just Id) @(Msg "expected a Sunday:" (Thd Id == 7)) @(UnMkDay (Fst Id)) (2019,10,12) -- Left "Step 2. False Boolean Check(op) | {expected a Sunday:6 == 7}" -- -- >>> newRefined1 @'OZ @(MkDayExtra' (Fst Id) (Snd Id) (Thd Id) >> 'Just Id) @(Guard "expected a Sunday" (Thd Id == 7) >> 'True) @(UnMkDay (Fst Id)) (2019,10,12) -- Left "Step 2. Failed Boolean Check(op) | expected a Sunday" -- -- >>> type T4 k = '( 'OZ, MkDayExtra Id >> 'Just Id, Guard "expected a Sunday" (Thd Id == 7) >> 'True, UnMkDay (Fst Id), k) -- >>> newRefined1P (Proxy @(T4 _)) (2019,10,12) -- Left "Step 2. Failed Boolean Check(op) | expected a Sunday" -- -- >>> newRefined1P (Proxy @(T4 _)) (2019,10,13) -- Right (Refined1 (2019-10-13,41,7)) -- newtype Refined1 (opts :: OptT) ip op fmt i = Refined1 (PP ip i) unRefined1 :: forall (opts :: OptT) ip op fmt i. Refined1 opts ip op fmt i -> PP ip i unRefined1 (Refined1 a) = a type role Refined1 nominal nominal nominal nominal nominal -- | directly load values into 'Refined1'. It still checks to see that those values are valid unsafeRefined1' :: forall opts ip op fmt i . ( HasCallStack , Show i , Show (PP ip i) , Refined1C opts ip op fmt i ) => i -> Refined1 opts ip op fmt i unsafeRefined1' i = let (ret,mr) = eval1 @opts @ip @op @fmt i in fromMaybe (error $ show (prt1Impl (getOptT @opts) ret)) mr -- | directly load values into 'Refined1' without any checking unsafeRefined1 :: forall opts ip op fmt i . PP ip i -> Refined1 opts ip op fmt i unsafeRefined1 = Refined1 -- | Provides the constraints on Refined1 type Refined1C opts ip op fmt i = ( OptTC opts , P ip i , P op (PP ip i) , PP op (PP ip i) ~ Bool -- the internal value needs to pass the predicate check , P fmt (PP ip i) , PP fmt (PP ip i) ~ i -- the output type must match the original input type ) deriving instance (Show i, Show (PP ip i), Show (PP fmt (PP ip i))) => Show (Refined1 opts ip op fmt i) deriving instance (Eq i, Eq (PP ip i), Eq (PP fmt (PP ip i))) => Eq (Refined1 opts ip op fmt i) deriving instance (TH.Lift (PP ip i), TH.Lift (PP fmt (PP ip i))) => TH.Lift (Refined1 opts ip op fmt i) instance (Refined1C opts ip op fmt String, Show (PP ip String)) => IsString (Refined1 opts ip op fmt String) where fromString s = let (ret,mr) = eval1 @opts @ip @op @fmt s in fromMaybe (error $ "Refined1(fromString):" ++ show (prt1Impl (getOptT @opts) ret)) mr -- read instance from -ddump-deriv -- | 'Read' instance for 'Refined1' -- -- >>> reads @(Refined1 'OZ (ReadBase Int 16 Id) (Between 0 255 Id) (ShowBase 16 Id) String) "Refined1 254" -- [(Refined1 254,"")] -- -- >>> reads @(Refined1 'OZ (ReadBase Int 16 Id) (Between 0 255 Id) (ShowBase 16 Id) String) "Refined1 300" -- [] -- -- >>> reads @(Refined1 'OZ (ReadBase Int 16 Id) (Id < 0) (ShowBase 16 Id) String) "Refined1 (-1234)" -- [(Refined1 (-1234),"")] -- -- >>> reads @(Refined1 'OZ (Map (ReadP Int Id) (Resplit "\\." Id)) (Guard "len/=4" (Len == 4) >> 'True) (PrintL 4 "%d.%d.%d.%d" Id) String) "Refined1 [192,168,0,1]" -- [(Refined1 [192,168,0,1],"")] -- -- >>> reads @(Refined1 'OZ Id 'True Id Int) "Refined1 (-123)xyz" -- [(Refined1 (-123),"xyz")] -- instance ( Eq i , Show i , Eq (PP ip i) , Show (PP ip i) , Refined1C opts ip op fmt i , Read (PP ip i) , Read (PP fmt (PP ip i)) ) => Read (Refined1 opts ip op fmt i) where readPrec = GR.parens (PCR.prec 11 (do GR.expectP (RL.Ident "Refined1") fld1 <- PCR.reset GR.readPrec let (_ret,mr) = runIdentity $ eval1MSkip @_ @opts @ip @op @fmt fld1 case mr of Nothing -> fail "" Just (Refined1 r1) | r1 == fld1 -> pure (Refined1 r1) | otherwise -> fail "" -- cant display a decent failure message )) readList = GR.readListDefault readListPrec = GR.readListPrecDefault -- | 'ToJSON' instance for 'Refined1' -- -- >>> import qualified Data.Aeson as A -- >>> A.encode (unsafeRefined1 @'OZ @(ReadBase Int 16 Id) @(Between 0 255 Id) @(ShowBase 16 Id) 254) -- "\"fe\"" -- -- >>> A.encode (unsafeRefined1 @'OZ @Id @'True @Id 123) -- "123" -- instance ( OptTC opts , Show (PP fmt (PP ip i)) , ToJSON (PP fmt (PP ip i)) , P fmt (PP ip i) ) => ToJSON (Refined1 opts ip op fmt i) where toJSON (Refined1 x) = let ss = runIdentity $ eval (Proxy @fmt) (getOptT @opts) x in case getValAndPE ss of (Right b,_) -> toJSON b (Left e,t3) -> error $ "oops tojson failed " ++ show e ++ " t3=" ++ show t3 -- | 'FromJSON' instance for 'Refined1' -- -- >>> import qualified Data.Aeson as A -- >>> A.eitherDecode' @(Refined1 'OZ (ReadBase Int 16 Id) (Id > 10 && Id < 256) (ShowBase 16 Id) String) "\"00fe\"" -- Right (Refined1 254) -- -- >>> removeAnsi $ A.eitherDecode' @(Refined1 'OAN (ReadBase Int 16 Id) (Id > 10 && Id < 256) (ShowBase 16 Id) String) "\"00fe443a\"" -- Error in $: Refined1:Step 2. False Boolean Check(op) | {True && False | (16663610 < 256)} -- -- *** Step 1. Success Initial Conversion(ip) [16663610] *** -- -- P ReadBase(Int,16) 16663610 | "00fe443a" -- | -- `- P Id "00fe443a" -- -- *** Step 2. False Boolean Check(op) *** -- -- False True && False | (16663610 < 256) -- | -- +- True 16663610 > 10 -- | | -- | +- P Id 16663610 -- | | -- | `- P '10 -- | -- `- False 16663610 < 256 -- | -- +- P Id 16663610 -- | -- `- P '256 -- -- instance (Show ( PP fmt (PP ip i)) , Show (PP ip i) , Refined1C opts ip op fmt i , FromJSON i ) => FromJSON (Refined1 opts ip op fmt i) where parseJSON z = do i <- parseJSON @i z let (ret,mr) = eval1 @opts @ip @op @fmt i case mr of Nothing -> fail $ "Refined1:" ++ show (prt1Impl (getOptT @opts) ret) Just r -> return r instance (Arbitrary (PP ip i) , Refined1C opts ip op fmt i ) => Arbitrary (Refined1 opts ip op fmt i) where arbitrary = genRefined1 arbitrary -- | create a 'Refined1' generator genRefined1 :: forall opts ip op fmt i . Refined1C opts ip op fmt i => Gen (PP ip i) -> Gen (Refined1 opts ip op fmt i) genRefined1 = genRefined1P Proxy -- | create a 'Refined1' generator genRefined1P :: forall opts ip op fmt i . Refined1C opts ip op fmt i => Proxy '(opts,ip,op,fmt,i) -> Gen (PP ip i) -> Gen (Refined1 opts ip op fmt i) genRefined1P _ g = let o = getOptT @opts f !cnt = do mppi <- suchThatMaybe g (\a -> getValLRFromTT (runIdentity (eval @_ (Proxy @op) o a)) == Right True) case mppi of Nothing -> if cnt >= oRecursion o then error $ markBoundary o ("genRefined1 recursion exceeded(" ++ show (oRecursion o) ++ ")") else f (cnt+1) Just ppi -> pure $ unsafeRefined1 ppi in f 0 -- | 'Binary' instance for 'Refined1' -- -- >>> import Control.Arrow ((+++)) -- >>> import Control.Lens -- >>> import Data.Time -- >>> type K1 = MakeR1 '( 'OAN, ReadP Day Id, 'True, ShowP Id, String) -- >>> type K2 = MakeR1 '( 'OAN, ReadP Day Id, Between (ReadP Day "2019-05-30") (ReadP Day "2019-06-01") Id, ShowP Id, String) -- >>> r = unsafeRefined1' "2019-04-23" :: K1 -- >>> removeAnsi $ (view _3 +++ view _3) $ B.decodeOrFail @K1 (B.encode r) -- Refined1 2019-04-23 -- -- >>> removeAnsi $ (view _3 +++ view _3) $ B.decodeOrFail @K2 (B.encode r) -- Refined1:Step 2. False Boolean Check(op) | {2019-05-30 <= 2019-04-23} -- -- *** Step 1. Success Initial Conversion(ip) [2019-04-23] *** -- -- P ReadP Day 2019-04-23 -- | -- `- P Id "2019-04-23" -- -- *** Step 2. False Boolean Check(op) *** -- -- False 2019-05-30 <= 2019-04-23 -- | -- +- P Id 2019-04-23 -- | -- +- P ReadP Day 2019-05-30 -- | | -- | `- P '2019-05-30 -- | -- `- P ReadP Day 2019-06-01 -- | -- `- P '2019-06-01 -- -- instance ( Show (PP fmt (PP ip i)) , Show (PP ip i) , Refined1C opts ip op fmt i , Binary i ) => Binary (Refined1 opts ip op fmt i) where get = do i <- B.get @i let (ret,mr) = eval1 @opts @ip @op @fmt i case mr of Nothing -> fail $ "Refined1:" ++ show (prt1Impl (getOptT @opts) ret) Just r -> return r put (Refined1 x) = let ss = runIdentity $ eval (Proxy @fmt) (getOptT @opts) x in case getValAndPE ss of (Right b,_) -> B.put @i b (Left e,t3) -> error $ "oops tojson failed " ++ show e ++ " t3=" ++ show t3 -- | 'Hashable' instance for 'Refined1' instance (Refined1C opts ip op fmt i , Hashable (PP ip i) ) => Hashable (Refined1 opts ip op fmt i) where hashWithSalt s (Refined1 a) = s + hash a -- | creates a 5-tuple proxy (see 'withRefined1TP' 'newRefined1TP' 'eval1P' 'prtEval1P') -- -- use type application to set the 5-tuple or set the individual parameters directly -- -- set the 5-tuple directly -- -- >>> eg1 = mkProxy1 @'( 'OL, ReadP Int Id, Gt 10, ShowP Id, String) -- >>> newRefined1P eg1 "24" -- Right (Refined1 24) -- -- skip the 5-tuple and set each parameter individually using type application -- -- >>> eg2 = mkProxy1 @_ @'OL @(ReadP Int Id) @(Gt 10) @(ShowP Id) -- >>> newRefined1P eg2 "24" -- Right (Refined1 24) -- mkProxy1 :: forall z opts ip op fmt i . z ~ '(opts,ip,op,fmt,i) => Proxy '(opts,ip,op,fmt,i) mkProxy1 = Proxy -- | same as 'mkProxy1' but checks to make sure the proxy is consistent with the 'Refined1C' constraint mkProxy1' :: forall z opts ip op fmt i . ( z ~ '(opts,ip,op,fmt,i) , Refined1C opts ip op fmt i ) => Proxy '(opts,ip,op,fmt,i) mkProxy1' = Proxy -- | type family for converting from a 5-tuple '(ip,op,fmt,i) to a 'Refined1' type type family MakeR1 p where MakeR1 '(opts,ip,op,fmt,i) = Refined1 opts ip op fmt i withRefined1TIO :: forall opts ip op fmt i m b . ( MonadIO m , Refined1C opts ip op fmt i , Show (PP ip i) , Show i ) => i -> (Refined1 opts ip op fmt i -> RefinedT m b) -> RefinedT m b withRefined1TIO = (>>=) . newRefined1TPIO (Proxy @'(opts,ip,op,fmt,i)) -- | create a 'Refined1' value using a continuation -- -- This first example reads a hex string and makes sure it is between 100 and 200 and then -- reads a binary string and adds the values together -- -- >>> :set -XPolyKinds -- >>> :set -XRankNTypes -- >>> b16 :: forall opts . Proxy '( opts, ReadBase Int 16 Id, Between 100 200 Id, ShowBase 16 Id, String); b16 = Proxy -- >>> b2 :: forall opts . Proxy '( opts, ReadBase Int 2 Id, 'True, ShowBase 2 Id, String); b2 = Proxy -- >>> prtRefinedTIO $ withRefined1TP (b16 @'OZ) "a3" $ \x -> withRefined1TP (b2 @'OZ) "1001110111" $ \y -> pure (unRefined1 x + unRefined1 y) -- 794 -- -- this example fails as the the hex value is out of range -- -- >>> prtRefinedTIO $ withRefined1TP (b16 @'OAN) "a388" $ \x -> withRefined1TP (b2 @'OAN) "1001110111" $ \y -> pure (x,y) -- -- *** Step 1. Success Initial Conversion(ip) [41864] *** -- -- P ReadBase(Int,16) 41864 | "a388" -- | -- `- P Id "a388" -- -- *** Step 2. False Boolean Check(op) *** -- -- False 41864 <= 200 -- | -- +- P Id 41864 -- | -- +- P '100 -- | -- `- P '200 -- -- failure msg[Step 2. False Boolean Check(op) | {41864 <= 200}] -- withRefined1T :: forall opts ip op fmt i m b . ( Monad m , Refined1C opts ip op fmt i , Show (PP ip i) , Show i) => i -> (Refined1 opts ip op fmt i -> RefinedT m b) -> RefinedT m b withRefined1T = (>>=) . newRefined1TP (Proxy @'(opts,ip,op,fmt,i)) withRefined1TP :: forall m opts ip op fmt i b proxy . ( Monad m , Refined1C opts ip op fmt i , Show (PP ip i) , Show i ) => proxy '(opts,ip,op,fmt,i) -> i -> (Refined1 opts ip op fmt i -> RefinedT m b) -> RefinedT m b withRefined1TP p = (>>=) . newRefined1TP p -- | pure version for extracting Refined1 -- -- >>> newRefined1 @'OU @(ParseTimeP TimeOfDay "%-H:%-M:%-S" Id) @'True @(FormatTimeP "%H:%M:%S" Id) "1:15:7" -- Right (Refined1 01:15:07) -- -- >>> newRefined1 @'OU @(ParseTimeP TimeOfDay "%-H:%-M:%-S" Id) @'True @(FormatTimeP "%H:%M:%S" Id) "1:2:x" -- Left "Step 1. Initial Conversion(ip) Failed | ParseTimeP TimeOfDay (%-H:%-M:%-S) failed to parse" -- -- >>> newRefined1 @'OU @(Rescan "^(\\d{1,2}):(\\d{1,2}):(\\d{1,2})$" Id >> Snd (Head Id) >> Map (ReadP Int Id) Id) @(All (0 <..> 59) Id && Len == 3) @(PrintL 3 "%02d:%02d:%02d" Id) "1:2:3" -- Right (Refined1 [1,2,3]) -- newRefined1 :: forall opts ip op fmt i . ( Refined1C opts ip op fmt i , Show (PP ip i) , Show i ) => i -> Either String (Refined1 opts ip op fmt i) newRefined1 = newRefined1P Proxy newRefined1P :: forall opts ip op fmt i proxy . ( Refined1C opts ip op fmt i , Show (PP ip i) , Show i ) => proxy '(opts,ip,op,fmt,i) -> i -> Either String (Refined1 opts ip op fmt i) newRefined1P _ = fst . runIdentity . unRavelT . newRefined1T @_ @opts @ip @op @fmt newRefined1T :: forall m opts ip op fmt i . ( Refined1C opts ip op fmt i , Monad m , Show (PP ip i) , Show i ) => i -> RefinedT m (Refined1 opts ip op fmt i) newRefined1T = newRefined1TP (Proxy @'(opts,ip,op,fmt,i)) -- | create a wrapped 'Refined1' type -- -- >>> prtRefinedTIO $ newRefined1TP (Proxy @'( 'OZ, MkDayExtra Id >> Just Id, GuardSimple (Thd Id == 5) >> 'True, UnMkDay (Fst Id), (Int,Int,Int))) (2019,11,1) -- Refined1 (2019-11-01,44,5) -- -- >>> prtRefinedTIO $ newRefined1TP (Proxy @'( 'OL, MkDayExtra Id >> Just Id, Thd Id == 5, UnMkDay (Fst Id), (Int,Int,Int))) (2019,11,2) -- failure msg[Step 2. False Boolean Check(op) | {6 == 5}] -- -- >>> prtRefinedTIO $ newRefined1TP (Proxy @'( 'OL, MkDayExtra Id >> Just Id, Msg "wrong day:" (Thd Id == 5), UnMkDay (Fst Id), (Int,Int,Int))) (2019,11,2) -- failure msg[Step 2. False Boolean Check(op) | {wrong day:6 == 5}] -- newRefined1TP :: forall m opts ip op fmt i proxy . ( Refined1C opts ip op fmt i , Monad m , Show (PP ip i) , Show i ) => proxy '(opts,ip,op,fmt,i) -> i -> RefinedT m (Refined1 opts ip op fmt i) newRefined1TP = newRefined1TPImpl (return . runIdentity) newRefined1TPIO :: forall m opts ip op fmt i proxy . ( Refined1C opts ip op fmt i , MonadIO m , Show (PP ip i) , Show i) => proxy '(opts,ip,op,fmt,i) -> i -> RefinedT m (Refined1 opts ip op fmt i) newRefined1TPIO = newRefined1TPImpl liftIO newRefined1TPImpl :: forall n m opts ip op fmt i proxy . ( Refined1C opts ip op fmt i , Monad m , MonadEval n , Show (PP ip i) , Show (PP fmt (PP ip i))) => (forall x . n x -> RefinedT m x) -> proxy '(opts,ip,op,fmt,i) -> i -> RefinedT m (Refined1 opts ip op fmt i) newRefined1TPImpl f _ i = do (ret,mr) <- f $ eval1M i let m1 = prt1Impl (getOptT @opts) ret tell [m1Long m1] case mr of Nothing -> throwError $ m1Desc m1 <> " | " <> m1Short m1 Just r -> return r newRefined1TPSkipIPImpl :: forall n m opts ip op fmt i proxy . ( Refined1C opts ip op fmt i , Monad m , MonadEval n , Show (PP ip i) , Show (PP fmt (PP ip i))) => (forall x . n x -> RefinedT m x) -> proxy '(opts,ip,op,fmt,i) -> PP ip i -> RefinedT m (Refined1 opts ip op fmt i) newRefined1TPSkipIPImpl f _ a = do (ret,mr) <- f $ eval1MSkip a let m1 = prt1Impl (getOptT @opts) ret tell [m1Long m1] case mr of Nothing -> throwError $ m1Desc m1 <> " | " <> m1Short m1 Just r -> return r -- | attempts to cast a wrapped 'Refined1' to another 'Refined1' with different predicates convertRefined1TP :: forall m opts ip op fmt i ip1 op1 fmt1 i1 . ( Refined1C opts ip1 op1 fmt1 i1 , Monad m , Show (PP ip i) , PP ip i ~ PP ip1 i1 , Show i1) => Proxy '(opts, ip, op, fmt, i) -> Proxy '(opts, ip1, op1, fmt1, i1) -> RefinedT m (Refined1 opts ip op fmt i) -> RefinedT m (Refined1 opts ip1 op1 fmt1 i1) convertRefined1TP _ _ ma = do Refined1 x <- ma -- we skip the input value @Id and go straight to the internal value so PP fmt (PP ip i) /= i for this call Refined1 a <- newRefined1TPSkipIPImpl (return . runIdentity) (Proxy @'(opts, ip1, op1, fmt1, i1)) x return (Refined1 a) -- | applies a binary operation to two wrapped 'Refined1' parameters rapply1 :: forall m opts ip op fmt i . ( Refined1C opts ip op fmt i , Monad m , Show (PP ip i) , Show i) => (PP ip i -> PP ip i -> PP ip i) -> RefinedT m (Refined1 opts ip op fmt i) -> RefinedT m (Refined1 opts ip op fmt i) -> RefinedT m (Refined1 opts ip op fmt i) rapply1 = rapply1P (Proxy @'(opts,ip,op,fmt,i)) -- prtRefinedTIO $ rapply1P base16 (+) (newRefined1TP Proxy "ff") (newRefined1TP Proxy "22") -- | same as 'rapply1' but uses a 5-tuple proxy instead rapply1P :: forall m opts ip op fmt i proxy . ( Refined1C opts ip op fmt i , Monad m , Show (PP ip i) , Show i) => proxy '(opts,ip,op,fmt,i) -> (PP ip i -> PP ip i -> PP ip i) -> RefinedT m (Refined1 opts ip op fmt i) -> RefinedT m (Refined1 opts ip op fmt i) -> RefinedT m (Refined1 opts ip op fmt i) rapply1P p f ma mb = do let opts = getOptT @opts tell [markBoundary opts "=== a ==="] Refined1 x <- ma tell [markBoundary opts "=== b ==="] Refined1 y <- mb -- we skip the input value @Id and go straight to the internal value so PP fmt (PP ip i) /= i for this call tell [markBoundary opts "=== a `op` b ==="] Refined1 a <- newRefined1TPSkipIPImpl (return . runIdentity) p (f x y) return (Refined1 a) -- | An ADT that summarises the results of evaluating Refined1 representing all possible states data RResults1 a b = RF !String !(Tree PE) -- Left e | RTF !a !(Tree PE) !String !(Tree PE) -- Right a + Left e | RTFalse !a !(Tree PE) !(Tree PE) -- Right a + Right False | RTTrueF !a !(Tree PE) !(Tree PE) !String !(Tree PE) -- Right a + Right True + Left e | RTTrueT !a !(Tree PE) !(Tree PE) !b !(Tree PE) -- Right a + Right True + Right b deriving Show -- | same as 'prtEval1PIO' but passes in the proxy prtEval1IO :: forall opts ip op fmt i . ( Refined1C opts ip op fmt i , Show (PP ip i) , Show i) => i -> IO (Either String (Refined1 opts ip op fmt i)) prtEval1IO = prtEval1PIO Proxy -- | same as 'prtEval1P' but runs in IO prtEval1PIO :: forall opts ip op fmt i proxy . ( Refined1C opts ip op fmt i , Show (PP ip i) , Show i) => proxy '(opts,ip,op,fmt,i) -> i -> IO (Either String (Refined1 opts ip op fmt i)) prtEval1PIO _ i = do x <- eval1M i prt1IO @opts x -- | same as 'prtEval1P' but skips the proxy and allows you to set each parameter individually using type application prtEval1 :: forall opts ip op fmt i . ( Refined1C opts ip op fmt i , Show (PP ip i) , Show i) => i -> Either Msg1 (Refined1 opts ip op fmt i) prtEval1 = prtEval1P Proxy -- | create a Refined1 using a 5-tuple proxy and aggregate the results on failure prtEval1P :: forall opts ip op fmt i proxy . ( Refined1C opts ip op fmt i , Show (PP ip i) , Show i) => proxy '(opts,ip,op,fmt,i) -> i -> Either Msg1 (Refined1 opts ip op fmt i) prtEval1P _ i = let (ret,mr) = eval1 i in maybe (Left $ prt1Impl (getOptT @opts) ret) Right mr -- | create a Refined1 value using a 5-tuple proxy (see 'mkProxy1') -- -- use 'mkProxy1' to package all the types together as a 5-tuple -- eval1P :: forall opts ip op fmt i proxy . Refined1C opts ip op fmt i => proxy '(opts,ip,op,fmt,i) -> i -> (RResults1 (PP ip i) (PP fmt (PP ip i)), Maybe (Refined1 opts ip op fmt i)) eval1P _ = runIdentity . eval1M -- | same as 'eval1P' but can pass the parameters individually using type application eval1 :: forall opts ip op fmt i . Refined1C opts ip op fmt i => i -> (RResults1 (PP ip i) (PP fmt (PP ip i)), Maybe (Refined1 opts ip op fmt i)) eval1 = eval1P Proxy eval1M :: forall m opts ip op fmt i . (MonadEval m, Refined1C opts ip op fmt i) => i -> m (RResults1 (PP ip i) (PP fmt (PP ip i)), Maybe (Refined1 opts ip op fmt i)) eval1M i = do let o = getOptT @opts ll <- eval (Proxy @ip) o i case getValAndPE ll of (Right a, t1) -> do rr <- evalBool (Proxy @op) o a case getValAndPE rr of (Right True,t2) -> do ss <- eval (Proxy @fmt) o a pure $ case getValAndPE ss of (Right b,t3) -> (RTTrueT a t1 t2 b t3, Just (Refined1 a)) (Left e,t3) -> (RTTrueF a t1 t2 e t3, Nothing) (Right False,t2) -> pure (RTFalse a t1 t2, Nothing) (Left e,t2) -> pure (RTF a t1 e t2, Nothing) (Left e,t1) -> pure (RF e t1, Nothing) -- | creates Refined1 value but skips the initial conversion eval1MSkip :: forall m opts ip op fmt i . (MonadEval m, Refined1C opts ip op fmt i) => PP ip i -> m (RResults1 (PP ip i) (PP fmt (PP ip i)), Maybe (Refined1 opts ip op fmt i)) eval1MSkip a = do let o = getOptT @opts rr <- evalBool (Proxy @op) o a case getValAndPE rr of (Right True,t2) -> do ss <- eval (Proxy @fmt) o a pure $ case getValAndPE ss of (Right b,t3) -> (RTTrueT a mkNodeSkipP t2 b t3, Just (Refined1 a)) (Left e,t3) -> (RTTrueF a mkNodeSkipP t2 e t3, Nothing) (Right False,t2) -> pure (RTFalse a mkNodeSkipP t2, Nothing) (Left e,t2) -> pure (RTF a mkNodeSkipP e t2, Nothing) prt1IO :: forall opts a b r . (OptTC opts, Show a, Show b) => (RResults1 a b, Maybe r) -> IO (Either String r) prt1IO (ret,mr) = do let o = getOptT @opts let m1 = prt1Impl o ret unless (hasNoTree o) $ putStrLn $ m1Long m1 return $ maybe (Left (m1Desc m1 <> " | " <> m1Short m1)) Right mr data Msg1 = Msg1 { m1Desc :: !String , m1Short :: !String , m1Long :: !String } deriving Eq instance Show Msg1 where show (Msg1 a b c) = a <> " | " <> b <> (if null c then "" else "\n" <> c) prt1Impl :: forall a b . (Show a, Show b) => POpts -> RResults1 a b -> Msg1 prt1Impl opts v = let outmsg msg = "\n*** " <> formatOMsg opts " " <> msg <> " ***\n\n" msg1 a = outmsg ("Step 1. Success Initial Conversion(ip) [" ++ show a ++ "]") mkMsg1 m n r | hasNoTree opts = Msg1 m n "" | otherwise = Msg1 m n r in case v of RF e t1 -> let (m,n) = ("Step 1. Initial Conversion(ip) Failed", e) r = outmsg m <> prtTreePure opts t1 in mkMsg1 m n r RTF a t1 e t2 -> let (m,n) = ("Step 2. Failed Boolean Check(op)", e) r = msg1 a <> fixLite opts a t1 <> outmsg m <> prtTreePure opts t2 in mkMsg1 m n r RTFalse a t1 t2 -> let (m,n) = ("Step 2. False Boolean Check(op)", z) z = let w = t2 ^. root . pString in if all isSpace w then "FalseP" else "{" <> w <> "}" r = msg1 a <> fixLite opts a t1 <> outmsg m <> prtTreePure opts t2 in mkMsg1 m n r RTTrueF a t1 t2 e t3 -> let (m,n) = ("Step 3. Failed Output Conversion(fmt)", e) r = msg1 a <> fixLite opts a t1 <> outmsg "Step 2. Success Boolean Check(op)" <> prtTreePure opts t2 <> outmsg m <> prtTreePure opts t3 in mkMsg1 m n r RTTrueT a t1 t2 b t3 -> let (m,n) = ("Step 3. Success Output Conversion(fmt)", show b) r = msg1 a <> fixLite opts a t1 <> outmsg "Step 2. Success Boolean Check(op)" <> prtTreePure opts t2 <> outmsg m <> fixLite opts b t3 in mkMsg1 m n r -- | similar to 'eval1P' but it emulates 'Refined1' but using 'Refined' -- -- takes a 5-tuple proxy as input but outputs the Refined value and the result separately -- -- * initial conversion using \'ip\' and stores that in 'Refined' -- * runs the boolean predicate \'op\' to make sure to validate the converted value from 1. -- * runs \'fmt\' against the converted value from 1. -- * returns both the 'Refined' and the output from 3. -- * if any of the above steps fail the process stops it and dumps out 'RResults1' -- eval1PX :: forall opts ip op fmt i proxy . Refined1C opts ip op fmt i => proxy '(opts,ip,op,fmt,i) -> i -> (RResults1 (PP ip i) (PP fmt (PP ip i)), Maybe (Refined opts op (PP ip i), PP fmt (PP ip i))) eval1PX _ i = runIdentity $ do let o = getOptT @opts ll <- eval (Proxy @ip) o i case getValAndPE ll of (Right a,t1) -> do rr <- evalBool (Proxy @op) o a case getValAndPE rr of (Right True,t2) -> do ss <- eval (Proxy @fmt) o a pure $ case getValAndPE ss of (Right b,t3) -> (RTTrueT a t1 t2 b t3, Just (unsafeRefined a, b)) (Left e,t3) -> (RTTrueF a t1 t2 e t3, Nothing) (Right False,t2) -> pure (RTFalse a t1 t2, Nothing) (Left e,t2) -> pure (RTF a t1 e t2, Nothing) (Left e,t1) -> pure (RF e t1, Nothing) -- | same as 'eval1PX' but allows you to set the parameters individually using type application eval1X :: forall opts ip op fmt i . Refined1C opts ip op fmt i => i -> (RResults1 (PP ip i) (PP fmt (PP ip i)), Maybe (Refined opts op (PP ip i), PP fmt (PP ip i))) eval1X = eval1PX (Proxy @'(opts,ip,op,fmt,i)) -- | emulates 'Refined' using 'Refined1' by setting the input conversion and output formatting as noops type RefinedEmulate (opts :: OptT) p a = Refined1 opts Id p Id a -- | replace the opts type type family ReplaceOptT1 (o :: OptT) t where ReplaceOptT1 o (Refined1 _ ip op fmt i) = Refined1 o ip op fmt i -- | change the opts type type family AppendOptT1 (o :: OptT) t where AppendOptT1 o (Refined1 o' ip op fmt i) = Refined1 (o' ':# o) ip op fmt i