{-# LANGUAGE CPP #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE RoleAnnotations #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE Unsafe #-} -- | Variant of @MutVar@ that has one less indirection for primitive types. -- The difference is illustrated by comparing @MutVar Int@ and @PrimVar Int@: -- -- * @MutVar Int@: @MutVar# --> I#@ -- * @PrimVar Int@: @MutableByteArray#@ -- -- This module is adapted from a module in Edward Kmett\'s @prim-ref@ library. module Data.Primitive.PrimVar ( -- * Primitive References PrimVar(..) , newPrimVar , newPinnedPrimVar , newAlignedPinnedPrimVar , readPrimVar , writePrimVar , modifyPrimVar , primVarContents , primVarToMutablePrimArray -- * Atomic Operations -- $atomic , casInt , fetchAddInt , fetchSubInt , fetchAndInt , fetchNandInt , fetchOrInt , fetchXorInt , atomicReadInt , atomicWriteInt ) where import Control.Monad.Primitive import Data.Primitive import GHC.Exts import GHC.Ptr (castPtr) -------------------------------------------------------------------------------- -- * Primitive References -------------------------------------------------------------------------------- -- | A 'PrimVar' behaves like a single-element mutable primitive array. newtype PrimVar s a = PrimVar (MutablePrimArray s a) type role PrimVar nominal nominal -- | Create a primitive reference. newPrimVar :: (PrimMonad m, Prim a) => a -> m (PrimVar (PrimState m) a) newPrimVar a = do m <- newPrimArray 1 writePrimArray m 0 a return (PrimVar m) {-# INLINE newPrimVar #-} -- | Create a pinned primitive reference. newPinnedPrimVar :: (PrimMonad m, Prim a) => a -> m (PrimVar (PrimState m) a) newPinnedPrimVar a = do m <- newPinnedPrimArray 1 writePrimArray m 0 a return (PrimVar m) {-# INLINE newPinnedPrimVar #-} -- | Create a pinned primitive reference with the appropriate alignment for its contents. newAlignedPinnedPrimVar :: (PrimMonad m, Prim a) => a -> m (PrimVar (PrimState m) a) newAlignedPinnedPrimVar a = do m <- newAlignedPinnedPrimArray 1 writePrimArray m 0 a return (PrimVar m) {-# INLINE newAlignedPinnedPrimVar #-} -- | Read a value from the 'PrimVar'. readPrimVar :: (PrimMonad m, Prim a) => PrimVar (PrimState m) a -> m a readPrimVar (PrimVar m) = readPrimArray m 0 {-# INLINE readPrimVar #-} -- | Write a value to the 'PrimVar'. writePrimVar :: (PrimMonad m, Prim a) => PrimVar (PrimState m) a -> a -> m () writePrimVar (PrimVar m) a = writePrimArray m 0 a {-# INLINE writePrimVar #-} -- | Mutate the contents of a 'PrimVar'. modifyPrimVar :: (PrimMonad m, Prim a) => PrimVar (PrimState m) a -> (a -> a) -> m () modifyPrimVar pv f = do x <- readPrimVar pv writePrimVar pv (f x) {-# INLINE modifyPrimVar #-} instance Eq (PrimVar s a) where PrimVar m == PrimVar n = sameMutablePrimArray m n {-# INLINE (==) #-} -- | Yield a pointer to the data of a 'PrimVar'. This operation is only safe on pinned byte arrays allocated by -- 'newPinnedPrimVar' or 'newAlignedPinnedPrimVar'. primVarContents :: PrimVar s a -> Ptr a primVarContents (PrimVar m) = castPtr $ mutablePrimArrayContents m {-# INLINE primVarContents #-} -- | Convert a 'PrimVar' to a one-elment 'MutablePrimArray'. primVarToMutablePrimArray :: PrimVar s a -> MutablePrimArray s a primVarToMutablePrimArray (PrimVar m) = m {-# INLINE primVarToMutablePrimArray #-} -------------------------------------------------------------------------------- -- * Atomic Operations -------------------------------------------------------------------------------- -- $atomic -- Atomic operations on `PrimVar s Int`. All atomic operations imply a full memory barrier. -- | Given a primitive reference, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation. casInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> Int -> m Int casInt (PrimVar (MutablePrimArray m)) (I# old) (I# new) = primitive $ \s -> case casIntArray# m 0# old new s of (# s', result #) -> (# s', I# result #) {-# INLINE casInt #-} -- | Given a reference, and a value to add, atomically add the value to the element. Returns the value of the element before the operation. fetchAddInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int fetchAddInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchAddIntArray# m 0# x s of (# s', result #) -> (# s', I# result #) {-# INLINE fetchAddInt #-} -- | Given a reference, and a value to subtract, atomically subtract the value from the element. Returns the value of the element before the operation. fetchSubInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int fetchSubInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchSubIntArray# m 0# x s of (# s', result #) -> (# s', I# result #) {-# INLINE fetchSubInt #-} -- | Given a reference, and a value to bitwise and, atomically and the value with the element. Returns the value of the element before the operation. fetchAndInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int fetchAndInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchAndIntArray# m 0# x s of (# s', result #) -> (# s', I# result #) {-# INLINE fetchAndInt #-} -- | Given a reference, and a value to bitwise nand, atomically nand the value with the element. Returns the value of the element before the operation. fetchNandInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int fetchNandInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchNandIntArray# m 0# x s of (# s', result #) -> (# s', I# result #) {-# INLINE fetchNandInt #-} -- | Given a reference, and a value to bitwise or, atomically or the value with the element. Returns the value of the element before the operation. fetchOrInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int fetchOrInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchOrIntArray# m 0# x s of (# s', result #) -> (# s', I# result #) {-# INLINE fetchOrInt #-} -- | Given a reference, and a value to bitwise xor, atomically xor the value with the element. Returns the value of the element before the operation. fetchXorInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m Int fetchXorInt (PrimVar (MutablePrimArray m)) (I# x) = primitive $ \s -> case fetchXorIntArray# m 0# x s of (# s', result #) -> (# s', I# result #) {-# INLINE fetchXorInt #-} -- | Given a reference, atomically read an element. atomicReadInt :: PrimMonad m => PrimVar (PrimState m) Int -> m Int atomicReadInt (PrimVar (MutablePrimArray m)) = primitive $ \s -> case atomicReadIntArray# m 0# s of (# s', result #) -> (# s', I# result #) {-# INLINE atomicReadInt #-} -- | Given a reference, atomically write an element. atomicWriteInt :: PrimMonad m => PrimVar (PrimState m) Int -> Int -> m () atomicWriteInt (PrimVar (MutablePrimArray m)) (I# x) = primitive_ $ \s -> atomicWriteIntArray# m 0# x s {-# INLINE atomicWriteInt #-}