{-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE CPP #-} module Data.Primitive.SIMD.Word16X8 (Word16X8) where -- This code was AUTOMATICALLY generated, DO NOT EDIT! import Data.Primitive.SIMD.Class import GHC.Word import GHC.Types import GHC.Exts import GHC.ST import Foreign.Storable import Control.Monad.Primitive import Data.Primitive.Types import Data.Primitive.ByteArray import Data.Primitive.Addr import Data.Monoid import Data.Typeable import qualified Data.Vector.Primitive as PV import qualified Data.Vector.Primitive.Mutable as PMV import Data.Vector.Unboxed (Unbox) import qualified Data.Vector.Unboxed as UV import Data.Vector.Generic (Vector(..)) import Data.Vector.Generic.Mutable (MVector(..)) -- ** Word16X8 data Word16X8 = Word16X8 Word16X8# deriving Typeable abs' :: Word16 -> Word16 abs' (W16# x) = W16# (abs# x) {-# INLINE abs# #-} abs# :: Word# -> Word# abs# x = case abs (W16# x) of W16# y -> y signum' :: Word16 -> Word16 signum' (W16# x) = W16# (signum# x) {-# NOINLINE signum# #-} signum# :: Word# -> Word# signum# x = case signum (W16# x) of W16# y -> y instance Eq Word16X8 where a == b = case unpackWord16X8 a of (x1, x2, x3, x4, x5, x6, x7, x8) -> case unpackWord16X8 b of (y1, y2, y3, y4, y5, y6, y7, y8) -> x1 == y1 && x2 == y2 && x3 == y3 && x4 == y4 && x5 == y5 && x6 == y6 && x7 == y7 && x8 == y8 instance Ord Word16X8 where a `compare` b = case unpackWord16X8 a of (x1, x2, x3, x4, x5, x6, x7, x8) -> case unpackWord16X8 b of (y1, y2, y3, y4, y5, y6, y7, y8) -> x1 `compare` y1 <> x2 `compare` y2 <> x3 `compare` y3 <> x4 `compare` y4 <> x5 `compare` y5 <> x6 `compare` y6 <> x7 `compare` y7 <> x8 `compare` y8 instance Show Word16X8 where showsPrec _ a s = case unpackWord16X8 a of (x1, x2, x3, x4, x5, x6, x7, x8) -> "Word16X8 (" ++ shows x1 (", " ++ shows x2 (", " ++ shows x3 (", " ++ shows x4 (", " ++ shows x5 (", " ++ shows x6 (", " ++ shows x7 (", " ++ shows x8 (")" ++ s)))))))) instance Num Word16X8 where (+) = plusWord16X8 (-) = minusWord16X8 (*) = timesWord16X8 negate = mapVector negate abs = mapVector abs' signum = mapVector signum' fromInteger = broadcastVector . fromInteger instance Bounded Word16X8 where minBound = broadcastVector minBound maxBound = broadcastVector maxBound instance Storable Word16X8 where sizeOf x = vectorSize x * elementSize x alignment = sizeOf peek (Ptr a) = readOffAddr (Addr a) 0 poke (Ptr a) = writeOffAddr (Addr a) 0 instance SIMDVector Word16X8 where type Elem Word16X8 = Word16 type ElemTuple Word16X8 = (Word16, Word16, Word16, Word16, Word16, Word16, Word16, Word16) nullVector = broadcastVector 0 vectorSize _ = 8 elementSize _ = 2 broadcastVector = broadcastWord16X8 unsafeInsertVector = unsafeInsertWord16X8 packVector = packWord16X8 unpackVector = unpackWord16X8 mapVector = mapWord16X8 zipVector = zipWord16X8 foldVector = foldWord16X8 instance SIMDIntVector Word16X8 where quotVector = quotWord16X8 remVector = remWord16X8 instance Prim Word16X8 where sizeOf# a = let !(I# x) = sizeOf a in x alignment# a = let !(I# x) = alignment a in x indexByteArray# ba i = indexWord16X8Array (ByteArray ba) (I# i) readByteArray# mba i s = let (ST r) = readWord16X8Array (MutableByteArray mba) (I# i) in r s writeByteArray# mba i v s = let (ST r) = writeWord16X8Array (MutableByteArray mba) (I# i) v in case r s of { (# s', _ #) -> s' } setByteArray# mba off n v s = let (ST r) = setByteArrayGeneric (MutableByteArray mba) (I# off) (I# n) v in case r s of { (# s', _ #) -> s' } indexOffAddr# addr i = indexWord16X8OffAddr (Addr addr) (I# i) readOffAddr# addr i s = let (ST r) = readWord16X8OffAddr (Addr addr) (I# i) in r s writeOffAddr# addr i v s = let (ST r) = writeWord16X8OffAddr (Addr addr) (I# i) v in case r s of { (# s', _ #) -> s' } setOffAddr# addr off n v s = let (ST r) = setOffAddrGeneric (Addr addr) (I# off) (I# n) v in case r s of { (# s', _ #) -> s' } newtype instance UV.Vector Word16X8 = V_Word16X8 (PV.Vector Word16X8) newtype instance UV.MVector s Word16X8 = MV_Word16X8 (PMV.MVector s Word16X8) instance Vector UV.Vector Word16X8 where basicUnsafeFreeze (MV_Word16X8 v) = V_Word16X8 <$> PV.unsafeFreeze v basicUnsafeThaw (V_Word16X8 v) = MV_Word16X8 <$> PV.unsafeThaw v basicLength (V_Word16X8 v) = PV.length v basicUnsafeSlice start len (V_Word16X8 v) = V_Word16X8(PV.unsafeSlice start len v) basicUnsafeIndexM (V_Word16X8 v) = PV.unsafeIndexM v basicUnsafeCopy (MV_Word16X8 m) (V_Word16X8 v) = PV.unsafeCopy m v elemseq _ = seq {-# INLINE basicUnsafeFreeze #-} {-# INLINE basicUnsafeThaw #-} {-# INLINE basicLength #-} {-# INLINE basicUnsafeSlice #-} {-# INLINE basicUnsafeIndexM #-} {-# INLINE basicUnsafeCopy #-} {-# INLINE elemseq #-} instance MVector UV.MVector Word16X8 where basicLength (MV_Word16X8 v) = PMV.length v basicUnsafeSlice start len (MV_Word16X8 v) = MV_Word16X8(PMV.unsafeSlice start len v) basicOverlaps (MV_Word16X8 v) (MV_Word16X8 w) = PMV.overlaps v w basicUnsafeNew len = MV_Word16X8 <$> PMV.unsafeNew len #if MIN_VERSION_vector(0,11,0) basicInitialize (MV_Word16X8 v) = basicInitialize v #endif basicUnsafeRead (MV_Word16X8 v) = PMV.unsafeRead v basicUnsafeWrite (MV_Word16X8 v) = PMV.unsafeWrite v {-# INLINE basicLength #-} {-# INLINE basicUnsafeSlice #-} {-# INLINE basicOverlaps #-} {-# INLINE basicUnsafeNew #-} {-# INLINE basicUnsafeRead #-} {-# INLINE basicUnsafeWrite #-} instance Unbox Word16X8 {-# INLINE broadcastWord16X8 #-} -- | Broadcast a scalar to all elements of a vector. broadcastWord16X8 :: Word16 -> Word16X8 broadcastWord16X8 (W16# x) = Word16X8 (broadcastWord16X8# x) {-# INLINE packWord16X8 #-} -- | Pack the elements of a tuple into a vector. packWord16X8 :: (Word16, Word16, Word16, Word16, Word16, Word16, Word16, Word16) -> Word16X8 packWord16X8 (W16# x1, W16# x2, W16# x3, W16# x4, W16# x5, W16# x6, W16# x7, W16# x8) = Word16X8 (packWord16X8# (# x1, x2, x3, x4, x5, x6, x7, x8 #)) {-# INLINE unpackWord16X8 #-} -- | Unpack the elements of a vector into a tuple. unpackWord16X8 :: Word16X8 -> (Word16, Word16, Word16, Word16, Word16, Word16, Word16, Word16) unpackWord16X8 (Word16X8 m1) = case unpackWord16X8# m1 of (# x1, x2, x3, x4, x5, x6, x7, x8 #) -> (W16# x1, W16# x2, W16# x3, W16# x4, W16# x5, W16# x6, W16# x7, W16# x8) {-# INLINE unsafeInsertWord16X8 #-} -- | Insert a scalar at the given position (starting from 0) in a vector. If the index is outside of the range, the behavior is undefined. unsafeInsertWord16X8 :: Word16X8 -> Word16 -> Int -> Word16X8 unsafeInsertWord16X8 (Word16X8 m1) (W16# y) _i@(I# ip) = Word16X8 (insertWord16X8# m1 y (ip -# 0#)) {-# INLINE[1] mapWord16X8 #-} -- | Apply a function to each element of a vector (unpacks and repacks the vector) mapWord16X8 :: (Word16 -> Word16) -> Word16X8 -> Word16X8 mapWord16X8 f = mapWord16X8# (\ x -> case f (W16# x) of { W16# y -> y}) {-# RULES "mapVector abs" mapWord16X8 abs = abs #-} {-# RULES "mapVector signum" mapWord16X8 signum = signum #-} {-# RULES "mapVector const" forall x . mapWord16X8 (const x) = const (broadcastVector x) #-} {-# RULES "mapVector (x+)" forall x v . mapWord16X8 (\ y -> x + y) v = broadcastVector x + v #-} {-# RULES "mapVector (+x)" forall x v . mapWord16X8 (\ y -> y + x) v = v + broadcastVector x #-} {-# RULES "mapVector (x-)" forall x v . mapWord16X8 (\ y -> x - y) v = broadcastVector x - v #-} {-# RULES "mapVector (-x)" forall x v . mapWord16X8 (\ y -> y - x) v = v - broadcastVector x #-} {-# RULES "mapVector (x*)" forall x v . mapWord16X8 (\ y -> x * y) v = broadcastVector x * v #-} {-# RULES "mapVector (*x)" forall x v . mapWord16X8 (\ y -> y * x) v = v * broadcastVector x #-} {-# RULES "mapVector (`quot` x)" forall x v . mapWord16X8 (\ y -> y `quot` x) v = v `quotVector` broadcastVector x #-} {-# RULES "mapVector (x `quot`)" forall x v . mapWord16X8 (\ y -> x `quot` y) v = broadcastVector x `quotVector` v #-} {-# INLINE[0] mapWord16X8# #-} -- | Unboxed helper function. mapWord16X8# :: (Word# -> Word#) -> Word16X8 -> Word16X8 mapWord16X8# f = \ v -> case unpackWord16X8 v of (W16# x1, W16# x2, W16# x3, W16# x4, W16# x5, W16# x6, W16# x7, W16# x8) -> packWord16X8 (W16# (f x1), W16# (f x2), W16# (f x3), W16# (f x4), W16# (f x5), W16# (f x6), W16# (f x7), W16# (f x8)) {-# INLINE[1] zipWord16X8 #-} -- | Zip two vectors together using a combining function (unpacks and repacks the vectors) zipWord16X8 :: (Word16 -> Word16 -> Word16) -> Word16X8 -> Word16X8 -> Word16X8 zipWord16X8 f = \ v1 v2 -> case unpackWord16X8 v1 of (x1, x2, x3, x4, x5, x6, x7, x8) -> case unpackWord16X8 v2 of (y1, y2, y3, y4, y5, y6, y7, y8) -> packWord16X8 (f x1 y1, f x2 y2, f x3 y3, f x4 y4, f x5 y5, f x6 y6, f x7 y7, f x8 y8) {-# RULES "zipVector +" forall a b . zipWord16X8 (+) a b = a + b #-} {-# RULES "zipVector -" forall a b . zipWord16X8 (-) a b = a - b #-} {-# RULES "zipVector *" forall a b . zipWord16X8 (*) a b = a * b #-} {-# RULES "zipVector `quotVector`" forall a b . zipWord16X8 quot a b = a `quotVector` b #-} {-# RULES "zipVector `remVector`" forall a b . zipWord16X8 rem a b = a `remVector` b #-} {-# INLINE[1] foldWord16X8 #-} -- | Fold the elements of a vector to a single value foldWord16X8 :: (Word16 -> Word16 -> Word16) -> Word16X8 -> Word16 foldWord16X8 f' = \ v -> case unpackWord16X8 v of (x1, x2, x3, x4, x5, x6, x7, x8) -> x1 `f` x2 `f` x3 `f` x4 `f` x5 `f` x6 `f` x7 `f` x8 where f !x !y = f' x y {-# INLINE plusWord16X8 #-} -- | Add two vectors element-wise. plusWord16X8 :: Word16X8 -> Word16X8 -> Word16X8 plusWord16X8 (Word16X8 m1_1) (Word16X8 m1_2) = Word16X8 (plusWord16X8# m1_1 m1_2) {-# INLINE minusWord16X8 #-} -- | Subtract two vectors element-wise. minusWord16X8 :: Word16X8 -> Word16X8 -> Word16X8 minusWord16X8 (Word16X8 m1_1) (Word16X8 m1_2) = Word16X8 (minusWord16X8# m1_1 m1_2) {-# INLINE timesWord16X8 #-} -- | Multiply two vectors element-wise. timesWord16X8 :: Word16X8 -> Word16X8 -> Word16X8 timesWord16X8 (Word16X8 m1_1) (Word16X8 m1_2) = Word16X8 (timesWord16X8# m1_1 m1_2) {-# INLINE quotWord16X8 #-} -- | Rounds towards zero element-wise. quotWord16X8 :: Word16X8 -> Word16X8 -> Word16X8 quotWord16X8 (Word16X8 m1_1) (Word16X8 m1_2) = Word16X8 (quotWord16X8# m1_1 m1_2) {-# INLINE remWord16X8 #-} -- | Satisfies (quot x y) * y + (rem x y) == x. remWord16X8 :: Word16X8 -> Word16X8 -> Word16X8 remWord16X8 (Word16X8 m1_1) (Word16X8 m1_2) = Word16X8 (remWord16X8# m1_1 m1_2) {-# INLINE indexWord16X8Array #-} -- | Read a vector from specified index of the immutable array. indexWord16X8Array :: ByteArray -> Int -> Word16X8 indexWord16X8Array (ByteArray a) (I# i) = Word16X8 (indexWord16X8Array# a i) {-# INLINE readWord16X8Array #-} -- | Read a vector from specified index of the mutable array. readWord16X8Array :: PrimMonad m => MutableByteArray (PrimState m) -> Int -> m Word16X8 readWord16X8Array (MutableByteArray a) (I# i) = primitive (\ s0 -> case readWord16X8Array# a ((i *# 1#) +# 0#) s0 of (# s1, m1 #) -> (# s1, Word16X8 m1 #)) {-# INLINE writeWord16X8Array #-} -- | Write a vector to specified index of mutable array. writeWord16X8Array :: PrimMonad m => MutableByteArray (PrimState m) -> Int -> Word16X8 -> m () writeWord16X8Array (MutableByteArray a) (I# i) (Word16X8 m1) = primitive_ (writeWord16X8Array# a ((i *# 1#) +# 0#) m1) {-# INLINE indexWord16X8OffAddr #-} -- | Reads vector from the specified index of the address. indexWord16X8OffAddr :: Addr -> Int -> Word16X8 indexWord16X8OffAddr (Addr a) (I# i) = Word16X8 (indexWord16X8OffAddr# (plusAddr# a (i *# 16#)) 0#) {-# INLINE readWord16X8OffAddr #-} -- | Reads vector from the specified index of the address. readWord16X8OffAddr :: PrimMonad m => Addr -> Int -> m Word16X8 readWord16X8OffAddr (Addr a) (I# i) = primitive (\ s0 -> case (\ addr i' -> readWord16X8OffAddr# (plusAddr# addr i') 0#) a ((i *# 16#) +# 0#) s0 of (# s1, m1 #) -> (# s1, Word16X8 m1 #)) {-# INLINE writeWord16X8OffAddr #-} -- | Write vector to the specified index of the address. writeWord16X8OffAddr :: PrimMonad m => Addr -> Int -> Word16X8 -> m () writeWord16X8OffAddr (Addr a) (I# i) (Word16X8 m1) = primitive_ (writeWord16X8OffAddr# (plusAddr# a ((i *# 16#) +# 0#)) 0# m1)