{-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE CPP #-} module Data.Primitive.SIMD.FloatX16 (FloatX16) where -- This code was AUTOMATICALLY generated, DO NOT EDIT! import Data.Primitive.SIMD.Class import GHC.Types import GHC.Exts import GHC.ST import Foreign.Storable import Control.Monad.Primitive import Data.Primitive.Types import Data.Primitive.ByteArray import Data.Primitive.Addr import Data.Monoid import Data.Typeable import qualified Data.Vector.Primitive as PV import qualified Data.Vector.Primitive.Mutable as PMV import Data.Vector.Unboxed (Unbox) import qualified Data.Vector.Unboxed as UV import Data.Vector.Generic (Vector(..)) import Data.Vector.Generic.Mutable (MVector(..)) -- ** FloatX16 data FloatX16 = FloatX16 FloatX8# FloatX8# deriving Typeable abs' :: Float -> Float abs' (F# x) = F# (abs# x) {-# NOINLINE abs# #-} abs# :: Float# -> Float# abs# x = case abs (F# x) of F# y -> y signum' :: Float -> Float signum' (F# x) = F# (signum# x) {-# NOINLINE signum# #-} signum# :: Float# -> Float# signum# x = case signum (F# x) of F# y -> y instance Eq FloatX16 where a == b = case unpackFloatX16 a of (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16) -> case unpackFloatX16 b of (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16) -> x1 == y1 && x2 == y2 && x3 == y3 && x4 == y4 && x5 == y5 && x6 == y6 && x7 == y7 && x8 == y8 && x9 == y9 && x10 == y10 && x11 == y11 && x12 == y12 && x13 == y13 && x14 == y14 && x15 == y15 && x16 == y16 instance Ord FloatX16 where a `compare` b = case unpackFloatX16 a of (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16) -> case unpackFloatX16 b of (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16) -> x1 `compare` y1 <> x2 `compare` y2 <> x3 `compare` y3 <> x4 `compare` y4 <> x5 `compare` y5 <> x6 `compare` y6 <> x7 `compare` y7 <> x8 `compare` y8 <> x9 `compare` y9 <> x10 `compare` y10 <> x11 `compare` y11 <> x12 `compare` y12 <> x13 `compare` y13 <> x14 `compare` y14 <> x15 `compare` y15 <> x16 `compare` y16 instance Show FloatX16 where showsPrec _ a s = case unpackFloatX16 a of (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16) -> "FloatX16 (" ++ shows x1 (", " ++ shows x2 (", " ++ shows x3 (", " ++ shows x4 (", " ++ shows x5 (", " ++ shows x6 (", " ++ shows x7 (", " ++ shows x8 (", " ++ shows x9 (", " ++ shows x10 (", " ++ shows x11 (", " ++ shows x12 (", " ++ shows x13 (", " ++ shows x14 (", " ++ shows x15 (", " ++ shows x16 (")" ++ s)))))))))))))))) instance Num FloatX16 where (+) = plusFloatX16 (-) = minusFloatX16 (*) = timesFloatX16 negate = negateFloatX16 abs = mapVector abs' signum = mapVector signum' fromInteger = broadcastVector . fromInteger instance Fractional FloatX16 where (/) = divideFloatX16 recip v = broadcastVector 1 / v fromRational = broadcastVector . fromRational instance Floating FloatX16 where pi = broadcastVector pi exp = mapVector exp sqrt = mapVector sqrt log = mapVector log (**) = zipVector (**) logBase = zipVector (**) sin = mapVector sin tan = mapVector tan cos = mapVector cos asin = mapVector asin atan = mapVector atan acos = mapVector acos sinh = mapVector sinh tanh = mapVector tanh cosh = mapVector cosh asinh = mapVector asinh atanh = mapVector atanh acosh = mapVector acosh instance Storable FloatX16 where sizeOf x = vectorSize x * elementSize x alignment = sizeOf peek (Ptr a) = readOffAddr (Addr a) 0 poke (Ptr a) = writeOffAddr (Addr a) 0 instance SIMDVector FloatX16 where type Elem FloatX16 = Float type ElemTuple FloatX16 = (Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float) nullVector = broadcastVector 0 vectorSize _ = 16 elementSize _ = 4 broadcastVector = broadcastFloatX16 unsafeInsertVector = unsafeInsertFloatX16 packVector = packFloatX16 unpackVector = unpackFloatX16 mapVector = mapFloatX16 zipVector = zipFloatX16 foldVector = foldFloatX16 sumVector = sumFloatX16 instance Prim FloatX16 where sizeOf# a = let !(I# x) = sizeOf a in x alignment# a = let !(I# x) = alignment a in x indexByteArray# ba i = indexFloatX16Array (ByteArray ba) (I# i) readByteArray# mba i s = let (ST r) = readFloatX16Array (MutableByteArray mba) (I# i) in r s writeByteArray# mba i v s = let (ST r) = writeFloatX16Array (MutableByteArray mba) (I# i) v in case r s of { (# s', _ #) -> s' } setByteArray# mba off n v s = let (ST r) = setByteArrayGeneric (MutableByteArray mba) (I# off) (I# n) v in case r s of { (# s', _ #) -> s' } indexOffAddr# addr i = indexFloatX16OffAddr (Addr addr) (I# i) readOffAddr# addr i s = let (ST r) = readFloatX16OffAddr (Addr addr) (I# i) in r s writeOffAddr# addr i v s = let (ST r) = writeFloatX16OffAddr (Addr addr) (I# i) v in case r s of { (# s', _ #) -> s' } setOffAddr# addr off n v s = let (ST r) = setOffAddrGeneric (Addr addr) (I# off) (I# n) v in case r s of { (# s', _ #) -> s' } newtype instance UV.Vector FloatX16 = V_FloatX16 (PV.Vector FloatX16) newtype instance UV.MVector s FloatX16 = MV_FloatX16 (PMV.MVector s FloatX16) instance Vector UV.Vector FloatX16 where basicUnsafeFreeze (MV_FloatX16 v) = V_FloatX16 <$> PV.unsafeFreeze v basicUnsafeThaw (V_FloatX16 v) = MV_FloatX16 <$> PV.unsafeThaw v basicLength (V_FloatX16 v) = PV.length v basicUnsafeSlice start len (V_FloatX16 v) = V_FloatX16(PV.unsafeSlice start len v) basicUnsafeIndexM (V_FloatX16 v) = PV.unsafeIndexM v basicUnsafeCopy (MV_FloatX16 m) (V_FloatX16 v) = PV.unsafeCopy m v elemseq _ = seq {-# INLINE basicUnsafeFreeze #-} {-# INLINE basicUnsafeThaw #-} {-# INLINE basicLength #-} {-# INLINE basicUnsafeSlice #-} {-# INLINE basicUnsafeIndexM #-} {-# INLINE basicUnsafeCopy #-} {-# INLINE elemseq #-} instance MVector UV.MVector FloatX16 where basicLength (MV_FloatX16 v) = PMV.length v basicUnsafeSlice start len (MV_FloatX16 v) = MV_FloatX16(PMV.unsafeSlice start len v) basicOverlaps (MV_FloatX16 v) (MV_FloatX16 w) = PMV.overlaps v w basicUnsafeNew len = MV_FloatX16 <$> PMV.unsafeNew len #if MIN_VERSION_vector(0,11,0) basicInitialize (MV_FloatX16 v) = basicInitialize v #endif basicUnsafeRead (MV_FloatX16 v) = PMV.unsafeRead v basicUnsafeWrite (MV_FloatX16 v) = PMV.unsafeWrite v {-# INLINE basicLength #-} {-# INLINE basicUnsafeSlice #-} {-# INLINE basicOverlaps #-} {-# INLINE basicUnsafeNew #-} {-# INLINE basicUnsafeRead #-} {-# INLINE basicUnsafeWrite #-} instance Unbox FloatX16 {-# INLINE broadcastFloatX16 #-} -- | Broadcast a scalar to all elements of a vector. broadcastFloatX16 :: Float -> FloatX16 broadcastFloatX16 (F# x) = case broadcastFloatX8# x of v -> FloatX16 v v {-# INLINE packFloatX16 #-} -- | Pack the elements of a tuple into a vector. packFloatX16 :: (Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float) -> FloatX16 packFloatX16 (F# x1, F# x2, F# x3, F# x4, F# x5, F# x6, F# x7, F# x8, F# x9, F# x10, F# x11, F# x12, F# x13, F# x14, F# x15, F# x16) = FloatX16 (packFloatX8# (# x1, x2, x3, x4, x5, x6, x7, x8 #)) (packFloatX8# (# x9, x10, x11, x12, x13, x14, x15, x16 #)) {-# INLINE unpackFloatX16 #-} -- | Unpack the elements of a vector into a tuple. unpackFloatX16 :: FloatX16 -> (Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float, Float) unpackFloatX16 (FloatX16 m1 m2) = case unpackFloatX8# m1 of (# x1, x2, x3, x4, x5, x6, x7, x8 #) -> case unpackFloatX8# m2 of (# x9, x10, x11, x12, x13, x14, x15, x16 #) -> (F# x1, F# x2, F# x3, F# x4, F# x5, F# x6, F# x7, F# x8, F# x9, F# x10, F# x11, F# x12, F# x13, F# x14, F# x15, F# x16) {-# INLINE unsafeInsertFloatX16 #-} -- | Insert a scalar at the given position (starting from 0) in a vector. If the index is outside of the range, the behavior is undefined. unsafeInsertFloatX16 :: FloatX16 -> Float -> Int -> FloatX16 unsafeInsertFloatX16 (FloatX16 m1 m2) (F# y) _i@(I# ip) | _i < 8 = FloatX16 (insertFloatX8# m1 y (ip -# 0#)) m2 | otherwise = FloatX16 m1 (insertFloatX8# m2 y (ip -# 8#)) {-# INLINE[1] mapFloatX16 #-} -- | Apply a function to each element of a vector (unpacks and repacks the vector) mapFloatX16 :: (Float -> Float) -> FloatX16 -> FloatX16 mapFloatX16 f = mapFloatX16# (\ x -> case f (F# x) of { F# y -> y}) {-# RULES "mapVector abs" mapFloatX16 abs = abs #-} {-# RULES "mapVector signum" mapFloatX16 signum = signum #-} {-# RULES "mapVector negate" mapFloatX16 negate = negate #-} {-# RULES "mapVector const" forall x . mapFloatX16 (const x) = const (broadcastVector x) #-} {-# RULES "mapVector (x+)" forall x v . mapFloatX16 (\ y -> x + y) v = broadcastVector x + v #-} {-# RULES "mapVector (+x)" forall x v . mapFloatX16 (\ y -> y + x) v = v + broadcastVector x #-} {-# RULES "mapVector (x-)" forall x v . mapFloatX16 (\ y -> x - y) v = broadcastVector x - v #-} {-# RULES "mapVector (-x)" forall x v . mapFloatX16 (\ y -> y - x) v = v - broadcastVector x #-} {-# RULES "mapVector (x*)" forall x v . mapFloatX16 (\ y -> x * y) v = broadcastVector x * v #-} {-# RULES "mapVector (*x)" forall x v . mapFloatX16 (\ y -> y * x) v = v * broadcastVector x #-} {-# RULES "mapVector (x/)" forall x v . mapFloatX16 (\ y -> x / y) v = broadcastVector x / v #-} {-# RULES "mapVector (/x)" forall x v . mapFloatX16 (\ y -> y / x) v = v / broadcastVector x #-} {-# INLINE[0] mapFloatX16# #-} -- | Unboxed helper function. mapFloatX16# :: (Float# -> Float#) -> FloatX16 -> FloatX16 mapFloatX16# f = \ v -> case unpackFloatX16 v of (F# x1, F# x2, F# x3, F# x4, F# x5, F# x6, F# x7, F# x8, F# x9, F# x10, F# x11, F# x12, F# x13, F# x14, F# x15, F# x16) -> packFloatX16 (F# (f x1), F# (f x2), F# (f x3), F# (f x4), F# (f x5), F# (f x6), F# (f x7), F# (f x8), F# (f x9), F# (f x10), F# (f x11), F# (f x12), F# (f x13), F# (f x14), F# (f x15), F# (f x16)) {-# INLINE[1] zipFloatX16 #-} -- | Zip two vectors together using a combining function (unpacks and repacks the vectors) zipFloatX16 :: (Float -> Float -> Float) -> FloatX16 -> FloatX16 -> FloatX16 zipFloatX16 f = \ v1 v2 -> case unpackFloatX16 v1 of (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16) -> case unpackFloatX16 v2 of (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16) -> packFloatX16 (f x1 y1, f x2 y2, f x3 y3, f x4 y4, f x5 y5, f x6 y6, f x7 y7, f x8 y8, f x9 y9, f x10 y10, f x11 y11, f x12 y12, f x13 y13, f x14 y14, f x15 y15, f x16 y16) {-# RULES "zipVector +" forall a b . zipFloatX16 (+) a b = a + b #-} {-# RULES "zipVector -" forall a b . zipFloatX16 (-) a b = a - b #-} {-# RULES "zipVector *" forall a b . zipFloatX16 (*) a b = a * b #-} {-# RULES "zipVector /" forall a b . zipFloatX16 (/) a b = a / b #-} {-# INLINE[1] foldFloatX16 #-} -- | Fold the elements of a vector to a single value foldFloatX16 :: (Float -> Float -> Float) -> FloatX16 -> Float foldFloatX16 f' = \ v -> case unpackFloatX16 v of (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16) -> x1 `f` x2 `f` x3 `f` x4 `f` x5 `f` x6 `f` x7 `f` x8 `f` x9 `f` x10 `f` x11 `f` x12 `f` x13 `f` x14 `f` x15 `f` x16 where f !x !y = f' x y {-# RULES "foldVector (+)" foldFloatX16 (+) = sumVector #-} {-# INLINE sumFloatX16 #-} -- | Sum up the elements of a vector to a single value. sumFloatX16 :: FloatX16 -> Float sumFloatX16 (FloatX16 x1 x2) = case unpackFloatX8# (plusFloatX8# x1 x2) of (# y1, y2, y3, y4, y5, y6, y7, y8 #) -> F# y1 + F# y2 + F# y3 + F# y4 + F# y5 + F# y6 + F# y7 + F# y8 {-# INLINE plusFloatX16 #-} -- | Add two vectors element-wise. plusFloatX16 :: FloatX16 -> FloatX16 -> FloatX16 plusFloatX16 (FloatX16 m1_1 m2_1) (FloatX16 m1_2 m2_2) = FloatX16 (plusFloatX8# m1_1 m1_2) (plusFloatX8# m2_1 m2_2) {-# INLINE minusFloatX16 #-} -- | Subtract two vectors element-wise. minusFloatX16 :: FloatX16 -> FloatX16 -> FloatX16 minusFloatX16 (FloatX16 m1_1 m2_1) (FloatX16 m1_2 m2_2) = FloatX16 (minusFloatX8# m1_1 m1_2) (minusFloatX8# m2_1 m2_2) {-# INLINE timesFloatX16 #-} -- | Multiply two vectors element-wise. timesFloatX16 :: FloatX16 -> FloatX16 -> FloatX16 timesFloatX16 (FloatX16 m1_1 m2_1) (FloatX16 m1_2 m2_2) = FloatX16 (timesFloatX8# m1_1 m1_2) (timesFloatX8# m2_1 m2_2) {-# INLINE divideFloatX16 #-} -- | Divide two vectors element-wise. divideFloatX16 :: FloatX16 -> FloatX16 -> FloatX16 divideFloatX16 (FloatX16 m1_1 m2_1) (FloatX16 m1_2 m2_2) = FloatX16 (divideFloatX8# m1_1 m1_2) (divideFloatX8# m2_1 m2_2) {-# INLINE negateFloatX16 #-} -- | Negate element-wise. negateFloatX16 :: FloatX16 -> FloatX16 negateFloatX16 (FloatX16 m1_1 m2_1) = FloatX16 (negateFloatX8# m1_1) (negateFloatX8# m2_1) {-# INLINE indexFloatX16Array #-} -- | Read a vector from specified index of the immutable array. indexFloatX16Array :: ByteArray -> Int -> FloatX16 indexFloatX16Array (ByteArray a) (I# i) = FloatX16 (indexFloatX8Array# a ((i *# 2#) +# 0#)) (indexFloatX8Array# a ((i *# 2#) +# 1#)) {-# INLINE readFloatX16Array #-} -- | Read a vector from specified index of the mutable array. readFloatX16Array :: PrimMonad m => MutableByteArray (PrimState m) -> Int -> m FloatX16 readFloatX16Array (MutableByteArray a) (I# i) = primitive (\ s0 -> case readFloatX8Array# a ((i *# 2#) +# 0#) s0 of (# s1, m1 #) -> case readFloatX8Array# a ((i *# 2#) +# 1#) s1 of (# s2, m2 #) -> (# s2, FloatX16 m1 m2 #)) {-# INLINE writeFloatX16Array #-} -- | Write a vector to specified index of mutable array. writeFloatX16Array :: PrimMonad m => MutableByteArray (PrimState m) -> Int -> FloatX16 -> m () writeFloatX16Array (MutableByteArray a) (I# i) (FloatX16 m1 m2) = primitive_ (writeFloatX8Array# a ((i *# 2#) +# 0#) m1) >> primitive_ (writeFloatX8Array# a ((i *# 2#) +# 1#) m2) {-# INLINE indexFloatX16OffAddr #-} -- | Reads vector from the specified index of the address. indexFloatX16OffAddr :: Addr -> Int -> FloatX16 indexFloatX16OffAddr (Addr a) (I# i) = FloatX16 (indexFloatX8OffAddr# (plusAddr# a ((i *# 64#) +# 0#)) 0#) (indexFloatX8OffAddr# (plusAddr# a ((i *# 64#) +# 32#)) 0#) {-# INLINE readFloatX16OffAddr #-} -- | Reads vector from the specified index of the address. readFloatX16OffAddr :: PrimMonad m => Addr -> Int -> m FloatX16 readFloatX16OffAddr (Addr a) (I# i) = primitive (\ s0 -> case (\ addr i' -> readFloatX8OffAddr# (plusAddr# addr i') 0#) a ((i *# 64#) +# 0#) s0 of (# s1, m1 #) -> case (\ addr i' -> readFloatX8OffAddr# (plusAddr# addr i') 0#) a ((i *# 64#) +# 32#) s1 of (# s2, m2 #) -> (# s2, FloatX16 m1 m2 #)) {-# INLINE writeFloatX16OffAddr #-} -- | Write vector to the specified index of the address. writeFloatX16OffAddr :: PrimMonad m => Addr -> Int -> FloatX16 -> m () writeFloatX16OffAddr (Addr a) (I# i) (FloatX16 m1 m2) = primitive_ (writeFloatX8OffAddr# (plusAddr# a ((i *# 64#) +# 0#)) 0# m1) >> primitive_ (writeFloatX8OffAddr# (plusAddr# a ((i *# 64#) +# 32#)) 0# m2)