{-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE CPP #-} module Data.Primitive.SIMD.Int32X4 (Int32X4) where -- This code was AUTOMATICALLY generated, DO NOT EDIT! import Data.Primitive.SIMD.Class import GHC.Int import GHC.Types import GHC.Exts import GHC.ST import Foreign.Storable import Control.Monad.Primitive import Data.Primitive.Types import Data.Primitive.ByteArray import Data.Primitive.Addr import Data.Monoid import Data.Typeable import qualified Data.Vector.Primitive as PV import qualified Data.Vector.Primitive.Mutable as PMV import Data.Vector.Unboxed (Unbox) import qualified Data.Vector.Unboxed as UV import Data.Vector.Generic (Vector(..)) import Data.Vector.Generic.Mutable (MVector(..)) -- ** Int32X4 data Int32X4 = Int32X4 Int32X4# deriving Typeable abs' :: Int32 -> Int32 abs' (I32# x) = I32# (abs# x) {-# NOINLINE abs# #-} abs# :: Int# -> Int# abs# x = case abs (I32# x) of I32# y -> y signum' :: Int32 -> Int32 signum' (I32# x) = I32# (signum# x) {-# NOINLINE signum# #-} signum# :: Int# -> Int# signum# x = case signum (I32# x) of I32# y -> y instance Eq Int32X4 where a == b = case unpackInt32X4 a of (x1, x2, x3, x4) -> case unpackInt32X4 b of (y1, y2, y3, y4) -> x1 == y1 && x2 == y2 && x3 == y3 && x4 == y4 instance Ord Int32X4 where a `compare` b = case unpackInt32X4 a of (x1, x2, x3, x4) -> case unpackInt32X4 b of (y1, y2, y3, y4) -> x1 `compare` y1 <> x2 `compare` y2 <> x3 `compare` y3 <> x4 `compare` y4 instance Show Int32X4 where showsPrec _ a s = case unpackInt32X4 a of (x1, x2, x3, x4) -> "Int32X4 (" ++ shows x1 (", " ++ shows x2 (", " ++ shows x3 (", " ++ shows x4 (")" ++ s)))) instance Num Int32X4 where (+) = plusInt32X4 (-) = minusInt32X4 (*) = timesInt32X4 negate = negateInt32X4 abs = mapVector abs' signum = mapVector signum' fromInteger = broadcastVector . fromInteger instance Bounded Int32X4 where minBound = broadcastVector minBound maxBound = broadcastVector maxBound instance Storable Int32X4 where sizeOf x = vectorSize x * elementSize x alignment = sizeOf peek (Ptr a) = readOffAddr (Addr a) 0 poke (Ptr a) = writeOffAddr (Addr a) 0 instance SIMDVector Int32X4 where type Elem Int32X4 = Int32 type ElemTuple Int32X4 = (Int32, Int32, Int32, Int32) nullVector = broadcastVector 0 vectorSize _ = 4 elementSize _ = 4 broadcastVector = broadcastInt32X4 unsafeInsertVector = unsafeInsertInt32X4 packVector = packInt32X4 unpackVector = unpackInt32X4 mapVector = mapInt32X4 zipVector = zipInt32X4 foldVector = foldInt32X4 instance SIMDIntVector Int32X4 where quotVector = quotInt32X4 remVector = remInt32X4 instance Prim Int32X4 where sizeOf# a = let !(I# x) = sizeOf a in x alignment# a = let !(I# x) = alignment a in x indexByteArray# ba i = indexInt32X4Array (ByteArray ba) (I# i) readByteArray# mba i s = let (ST r) = readInt32X4Array (MutableByteArray mba) (I# i) in r s writeByteArray# mba i v s = let (ST r) = writeInt32X4Array (MutableByteArray mba) (I# i) v in case r s of { (# s', _ #) -> s' } setByteArray# mba off n v s = let (ST r) = setByteArrayGeneric (MutableByteArray mba) (I# off) (I# n) v in case r s of { (# s', _ #) -> s' } indexOffAddr# addr i = indexInt32X4OffAddr (Addr addr) (I# i) readOffAddr# addr i s = let (ST r) = readInt32X4OffAddr (Addr addr) (I# i) in r s writeOffAddr# addr i v s = let (ST r) = writeInt32X4OffAddr (Addr addr) (I# i) v in case r s of { (# s', _ #) -> s' } setOffAddr# addr off n v s = let (ST r) = setOffAddrGeneric (Addr addr) (I# off) (I# n) v in case r s of { (# s', _ #) -> s' } newtype instance UV.Vector Int32X4 = V_Int32X4 (PV.Vector Int32X4) newtype instance UV.MVector s Int32X4 = MV_Int32X4 (PMV.MVector s Int32X4) instance Vector UV.Vector Int32X4 where basicUnsafeFreeze (MV_Int32X4 v) = V_Int32X4 <$> PV.unsafeFreeze v basicUnsafeThaw (V_Int32X4 v) = MV_Int32X4 <$> PV.unsafeThaw v basicLength (V_Int32X4 v) = PV.length v basicUnsafeSlice start len (V_Int32X4 v) = V_Int32X4(PV.unsafeSlice start len v) basicUnsafeIndexM (V_Int32X4 v) = PV.unsafeIndexM v basicUnsafeCopy (MV_Int32X4 m) (V_Int32X4 v) = PV.unsafeCopy m v elemseq _ = seq {-# INLINE basicUnsafeFreeze #-} {-# INLINE basicUnsafeThaw #-} {-# INLINE basicLength #-} {-# INLINE basicUnsafeSlice #-} {-# INLINE basicUnsafeIndexM #-} {-# INLINE basicUnsafeCopy #-} {-# INLINE elemseq #-} instance MVector UV.MVector Int32X4 where basicLength (MV_Int32X4 v) = PMV.length v basicUnsafeSlice start len (MV_Int32X4 v) = MV_Int32X4(PMV.unsafeSlice start len v) basicOverlaps (MV_Int32X4 v) (MV_Int32X4 w) = PMV.overlaps v w basicUnsafeNew len = MV_Int32X4 <$> PMV.unsafeNew len #if MIN_VERSION_vector(0,11,0) basicInitialize (MV_Int32X4 v) = basicInitialize v #endif basicUnsafeRead (MV_Int32X4 v) = PMV.unsafeRead v basicUnsafeWrite (MV_Int32X4 v) = PMV.unsafeWrite v {-# INLINE basicLength #-} {-# INLINE basicUnsafeSlice #-} {-# INLINE basicOverlaps #-} {-# INLINE basicUnsafeNew #-} {-# INLINE basicUnsafeRead #-} {-# INLINE basicUnsafeWrite #-} instance Unbox Int32X4 {-# INLINE broadcastInt32X4 #-} -- | Broadcast a scalar to all elements of a vector. broadcastInt32X4 :: Int32 -> Int32X4 broadcastInt32X4 (I32# x) = Int32X4 (broadcastInt32X4# x) {-# INLINE packInt32X4 #-} -- | Pack the elements of a tuple into a vector. packInt32X4 :: (Int32, Int32, Int32, Int32) -> Int32X4 packInt32X4 (I32# x1, I32# x2, I32# x3, I32# x4) = Int32X4 (packInt32X4# (# x1, x2, x3, x4 #)) {-# INLINE unpackInt32X4 #-} -- | Unpack the elements of a vector into a tuple. unpackInt32X4 :: Int32X4 -> (Int32, Int32, Int32, Int32) unpackInt32X4 (Int32X4 m1) = case unpackInt32X4# m1 of (# x1, x2, x3, x4 #) -> (I32# x1, I32# x2, I32# x3, I32# x4) {-# INLINE unsafeInsertInt32X4 #-} -- | Insert a scalar at the given position (starting from 0) in a vector. If the index is outside of the range, the behavior is undefined. unsafeInsertInt32X4 :: Int32X4 -> Int32 -> Int -> Int32X4 unsafeInsertInt32X4 (Int32X4 m1) (I32# y) _i@(I# ip) = Int32X4 (insertInt32X4# m1 y (ip -# 0#)) {-# INLINE[1] mapInt32X4 #-} -- | Apply a function to each element of a vector (unpacks and repacks the vector) mapInt32X4 :: (Int32 -> Int32) -> Int32X4 -> Int32X4 mapInt32X4 f = mapInt32X4# (\ x -> case f (I32# x) of { I32# y -> y}) {-# RULES "mapVector abs" mapInt32X4 abs = abs #-} {-# RULES "mapVector signum" mapInt32X4 signum = signum #-} {-# RULES "mapVector negate" mapInt32X4 negate = negate #-} {-# RULES "mapVector const" forall x . mapInt32X4 (const x) = const (broadcastVector x) #-} {-# RULES "mapVector (x+)" forall x v . mapInt32X4 (\ y -> x + y) v = broadcastVector x + v #-} {-# RULES "mapVector (+x)" forall x v . mapInt32X4 (\ y -> y + x) v = v + broadcastVector x #-} {-# RULES "mapVector (x-)" forall x v . mapInt32X4 (\ y -> x - y) v = broadcastVector x - v #-} {-# RULES "mapVector (-x)" forall x v . mapInt32X4 (\ y -> y - x) v = v - broadcastVector x #-} {-# RULES "mapVector (x*)" forall x v . mapInt32X4 (\ y -> x * y) v = broadcastVector x * v #-} {-# RULES "mapVector (*x)" forall x v . mapInt32X4 (\ y -> y * x) v = v * broadcastVector x #-} {-# RULES "mapVector (`quot` x)" forall x v . mapInt32X4 (\ y -> y `quot` x) v = v `quotVector` broadcastVector x #-} {-# RULES "mapVector (x `quot`)" forall x v . mapInt32X4 (\ y -> x `quot` y) v = broadcastVector x `quotVector` v #-} {-# INLINE[0] mapInt32X4# #-} -- | Unboxed helper function. mapInt32X4# :: (Int# -> Int#) -> Int32X4 -> Int32X4 mapInt32X4# f = \ v -> case unpackInt32X4 v of (I32# x1, I32# x2, I32# x3, I32# x4) -> packInt32X4 (I32# (f x1), I32# (f x2), I32# (f x3), I32# (f x4)) {-# INLINE[1] zipInt32X4 #-} -- | Zip two vectors together using a combining function (unpacks and repacks the vectors) zipInt32X4 :: (Int32 -> Int32 -> Int32) -> Int32X4 -> Int32X4 -> Int32X4 zipInt32X4 f = \ v1 v2 -> case unpackInt32X4 v1 of (x1, x2, x3, x4) -> case unpackInt32X4 v2 of (y1, y2, y3, y4) -> packInt32X4 (f x1 y1, f x2 y2, f x3 y3, f x4 y4) {-# RULES "zipVector +" forall a b . zipInt32X4 (+) a b = a + b #-} {-# RULES "zipVector -" forall a b . zipInt32X4 (-) a b = a - b #-} {-# RULES "zipVector *" forall a b . zipInt32X4 (*) a b = a * b #-} {-# RULES "zipVector `quotVector`" forall a b . zipInt32X4 quot a b = a `quotVector` b #-} {-# RULES "zipVector `remVector`" forall a b . zipInt32X4 rem a b = a `remVector` b #-} {-# INLINE[1] foldInt32X4 #-} -- | Fold the elements of a vector to a single value foldInt32X4 :: (Int32 -> Int32 -> Int32) -> Int32X4 -> Int32 foldInt32X4 f' = \ v -> case unpackInt32X4 v of (x1, x2, x3, x4) -> x1 `f` x2 `f` x3 `f` x4 where f !x !y = f' x y {-# INLINE plusInt32X4 #-} -- | Add two vectors element-wise. plusInt32X4 :: Int32X4 -> Int32X4 -> Int32X4 plusInt32X4 (Int32X4 m1_1) (Int32X4 m1_2) = Int32X4 (plusInt32X4# m1_1 m1_2) {-# INLINE minusInt32X4 #-} -- | Subtract two vectors element-wise. minusInt32X4 :: Int32X4 -> Int32X4 -> Int32X4 minusInt32X4 (Int32X4 m1_1) (Int32X4 m1_2) = Int32X4 (minusInt32X4# m1_1 m1_2) {-# INLINE timesInt32X4 #-} -- | Multiply two vectors element-wise. timesInt32X4 :: Int32X4 -> Int32X4 -> Int32X4 timesInt32X4 (Int32X4 m1_1) (Int32X4 m1_2) = Int32X4 (timesInt32X4# m1_1 m1_2) {-# INLINE quotInt32X4 #-} -- | Rounds towards zero element-wise. quotInt32X4 :: Int32X4 -> Int32X4 -> Int32X4 quotInt32X4 (Int32X4 m1_1) (Int32X4 m1_2) = Int32X4 (quotInt32X4# m1_1 m1_2) {-# INLINE remInt32X4 #-} -- | Satisfies (quot x y) * y + (rem x y) == x. remInt32X4 :: Int32X4 -> Int32X4 -> Int32X4 remInt32X4 (Int32X4 m1_1) (Int32X4 m1_2) = Int32X4 (remInt32X4# m1_1 m1_2) {-# INLINE negateInt32X4 #-} -- | Negate element-wise. negateInt32X4 :: Int32X4 -> Int32X4 negateInt32X4 (Int32X4 m1_1) = Int32X4 (negateInt32X4# m1_1) {-# INLINE indexInt32X4Array #-} -- | Read a vector from specified index of the immutable array. indexInt32X4Array :: ByteArray -> Int -> Int32X4 indexInt32X4Array (ByteArray a) (I# i) = Int32X4 (indexInt32X4Array# a i) {-# INLINE readInt32X4Array #-} -- | Read a vector from specified index of the mutable array. readInt32X4Array :: PrimMonad m => MutableByteArray (PrimState m) -> Int -> m Int32X4 readInt32X4Array (MutableByteArray a) (I# i) = primitive (\ s0 -> case readInt32X4Array# a ((i *# 1#) +# 0#) s0 of (# s1, m1 #) -> (# s1, Int32X4 m1 #)) {-# INLINE writeInt32X4Array #-} -- | Write a vector to specified index of mutable array. writeInt32X4Array :: PrimMonad m => MutableByteArray (PrimState m) -> Int -> Int32X4 -> m () writeInt32X4Array (MutableByteArray a) (I# i) (Int32X4 m1) = primitive_ (writeInt32X4Array# a ((i *# 1#) +# 0#) m1) {-# INLINE indexInt32X4OffAddr #-} -- | Reads vector from the specified index of the address. indexInt32X4OffAddr :: Addr -> Int -> Int32X4 indexInt32X4OffAddr (Addr a) (I# i) = Int32X4 (indexInt32X4OffAddr# (plusAddr# a (i *# 16#)) 0#) {-# INLINE readInt32X4OffAddr #-} -- | Reads vector from the specified index of the address. readInt32X4OffAddr :: PrimMonad m => Addr -> Int -> m Int32X4 readInt32X4OffAddr (Addr a) (I# i) = primitive (\ s0 -> case (\ addr i' -> readInt32X4OffAddr# (plusAddr# addr i') 0#) a ((i *# 16#) +# 0#) s0 of (# s1, m1 #) -> (# s1, Int32X4 m1 #)) {-# INLINE writeInt32X4OffAddr #-} -- | Write vector to the specified index of the address. writeInt32X4OffAddr :: PrimMonad m => Addr -> Int -> Int32X4 -> m () writeInt32X4OffAddr (Addr a) (I# i) (Int32X4 m1) = primitive_ (writeInt32X4OffAddr# (plusAddr# a ((i *# 16#) +# 0#)) 0# m1)