{-# LANGUAGE RankNTypes #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ <= 708 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Profunctor.Rep -- Copyright : (C) 2011-2015 Edward Kmett, -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : Type-Families -- ---------------------------------------------------------------------------- module Data.Profunctor.Rep ( -- * Representable Profunctors Representable(..) , tabulated , firstRep, secondRep -- * Corepresentable Profunctors , Corepresentable(..) , cotabulated , unfirstCorep, unsecondCorep ) where import Control.Applicative import Control.Arrow import Control.Comonad import Data.Functor.Identity import Data.Profunctor import Data.Profunctor.Sieve import Data.Proxy import Data.Tagged -- * Representable Profunctors -- | A 'Profunctor' @p@ is 'Representable' if there exists a 'Functor' @f@ such that -- @p d c@ is isomorphic to @d -> f c@. class (Sieve p (Rep p), Strong p) => Representable p where type Rep p :: * -> * tabulate :: (d -> Rep p c) -> p d c -- | Default definition for 'first'' given that p is 'Representable'. firstRep :: Representable p => p a b -> p (a, c) (b, c) firstRep p = tabulate $ \(a,c) -> (\b -> (b, c)) <$> sieve p a -- | Default definition for 'second'' given that p is 'Representable'. secondRep :: Representable p => p a b -> p (c, a) (c, b) secondRep p = tabulate $ \(c,a) -> (,) c <$> sieve p a instance Representable (->) where type Rep (->) = Identity tabulate f = runIdentity . f {-# INLINE tabulate #-} instance (Monad m, Functor m) => Representable (Kleisli m) where type Rep (Kleisli m) = m tabulate = Kleisli {-# INLINE tabulate #-} instance Functor f => Representable (Star f) where type Rep (Star f) = f tabulate = Star {-# INLINE tabulate #-} instance Representable (Forget r) where type Rep (Forget r) = Const r tabulate = Forget . (getConst .) {-# INLINE tabulate #-} type Iso s t a b = forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t) -- | 'tabulate' and 'sieve' form two halves of an isomorphism. -- -- This can be used with the combinators from the @lens@ package. -- -- @'tabulated' :: 'Representable' p => 'Iso'' (d -> 'Rep' p c) (p d c)@ tabulated :: (Representable p, Representable q) => Iso (d -> Rep p c) (d' -> Rep q c') (p d c) (q d' c') tabulated = dimap tabulate (fmap sieve) {-# INLINE tabulated #-} -- * Corepresentable Profunctors -- | A 'Profunctor' @p@ is 'Corepresentable' if there exists a 'Functor' @f@ such that -- @p d c@ is isomorphic to @f d -> c@. class (Cosieve p (Corep p), Costrong p) => Corepresentable p where type Corep p :: * -> * cotabulate :: (Corep p d -> c) -> p d c -- | Default definition for 'unfirst' given that p is 'Corepresentable'. unfirstCorep :: Corepresentable p => p (a, d) (b, d) -> p a b unfirstCorep p = cotabulate f where f fa = b where (b, d) = cosieve p ((\a -> (a, d)) <$> fa) -- | Default definition for 'unsecond' given that p is 'Corepresentable'. unsecondCorep :: Corepresentable p => p (d, a) (d, b) -> p a b unsecondCorep p = cotabulate f where f fa = b where (d, b) = cosieve p ((,) d <$> fa) instance Corepresentable (->) where type Corep (->) = Identity cotabulate f = f . Identity {-# INLINE cotabulate #-} instance Functor w => Corepresentable (Cokleisli w) where type Corep (Cokleisli w) = w cotabulate = Cokleisli {-# INLINE cotabulate #-} instance Corepresentable Tagged where type Corep Tagged = Proxy cotabulate f = Tagged (f Proxy) {-# INLINE cotabulate #-} instance Functor f => Corepresentable (Costar f) where type Corep (Costar f) = f cotabulate = Costar {-# INLINE cotabulate #-} -- | 'cotabulate' and 'cosieve' form two halves of an isomorphism. -- -- This can be used with the combinators from the @lens@ package. -- -- @'cotabulated' :: 'Corep' f p => 'Iso'' (f d -> c) (p d c)@ cotabulated :: (Corepresentable p, Corepresentable q) => Iso (Corep p d -> c) (Corep q d' -> c') (p d c) (q d' c') cotabulated = dimap cotabulate (fmap cosieve) {-# INLINE cotabulated #-}