{-# LANGUAGE NamedFieldPuns #-} -- | -- This module implements the type checker -- module Language.PureScript.TypeChecker.Types ( BindingGroupType(..) , typesOf ) where {- The following functions represent the corresponding type checking judgements: infer Synthesize a type for a value check Check a value has a given type checkProperties Check an object with a given type contains specified properties checkFunctionApplication Check a function of a given type returns a value of another type when applied to its arguments -} import Prelude.Compat import Control.Arrow (first, second, (***)) import Control.Monad import Control.Monad.Error.Class (MonadError(..)) import Control.Monad.State.Class (MonadState(..), gets) import Control.Monad.Supply.Class (MonadSupply) import Control.Monad.Writer.Class (MonadWriter(..)) import Data.Bifunctor (bimap) import Data.Either (partitionEithers) import Data.Functor (($>)) import Data.List (transpose, nub, (\\), partition, delete) import Data.Maybe (fromMaybe) import Data.Monoid ((<>)) import qualified Data.Map as M import qualified Data.Set as S import Data.Traversable (for) import Language.PureScript.AST import Language.PureScript.Crash import Language.PureScript.Environment import Language.PureScript.Errors import Language.PureScript.Kinds import Language.PureScript.Names import Language.PureScript.Traversals import Language.PureScript.TypeChecker.Entailment import Language.PureScript.TypeChecker.Kinds import Language.PureScript.TypeChecker.Monad import Language.PureScript.TypeChecker.Rows import Language.PureScript.TypeChecker.Skolems import Language.PureScript.TypeChecker.Subsumption import Language.PureScript.TypeChecker.Synonyms import Language.PureScript.TypeChecker.TypeSearch import Language.PureScript.TypeChecker.Unify import Language.PureScript.Types import Language.PureScript.Label (Label(..)) import Language.PureScript.PSString (PSString) data BindingGroupType = RecursiveBindingGroup | NonRecursiveBindingGroup deriving (Show, Eq, Ord) -- | Infer the types of multiple mutually-recursive values, and return elaborated values including -- type class dictionaries and type annotations. typesOf :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => BindingGroupType -> ModuleName -> [(Ident, Expr)] -> m [(Ident, (Expr, Type))] typesOf bindingGroupType moduleName vals = withFreshSubstitution $ do tys <- capturingSubstitution tidyUp $ do SplitBindingGroup untyped typed dict <- typeDictionaryForBindingGroup (Just moduleName) vals ds1 <- parU typed $ \e -> withoutWarnings $ checkTypedBindingGroupElement moduleName e dict ds2 <- forM untyped $ \e -> withoutWarnings $ typeForBindingGroupElement e dict return (map (False, ) ds1 ++ map (True, ) ds2) inferred <- forM tys $ \(shouldGeneralize, ((ident, (val, ty)), _)) -> do -- Replace type class dictionary placeholders with actual dictionaries (val', unsolved) <- replaceTypeClassDictionaries shouldGeneralize val -- Generalize and constrain the type currentSubst <- gets checkSubstitution let ty' = substituteType currentSubst ty unsolvedTypeVars = nub $ unknownsInType ty' generalized = generalize unsolved ty' when shouldGeneralize $ do -- Show the inferred type in a warning tell . errorMessage $ MissingTypeDeclaration ident generalized -- For non-recursive binding groups, can generalize over constraints. -- For recursive binding groups, we throw an error here for now. when (bindingGroupType == RecursiveBindingGroup && not (null unsolved)) . throwError . errorMessage $ CannotGeneralizeRecursiveFunction ident generalized -- Make sure any unsolved type constraints only use type variables which appear -- unknown in the inferred type. forM_ unsolved $ \(_, _, con) -> do -- We need information about functional dependencies, since we allow -- ambiguous types to be inferred if they can be solved by some functional -- dependency. let findClass = fromMaybe (internalError "entails: type class not found in environment") . M.lookup (constraintClass con) TypeClassData{ typeClassDependencies } <- gets (findClass . typeClasses . checkEnv) let solved = foldMap (S.fromList . fdDetermined) typeClassDependencies let constraintTypeVars = nub . foldMap (unknownsInType . fst) . filter ((`notElem` solved) . snd) $ zip (constraintArgs con) [0..] when (any (`notElem` unsolvedTypeVars) constraintTypeVars) $ do throwError . onErrorMessages (replaceTypes currentSubst) . errorMessage $ AmbiguousTypeVariables generalized con -- Check skolem variables did not escape their scope skolemEscapeCheck val' -- Check rows do not contain duplicate labels checkDuplicateLabels val' return ((ident, (foldr (Abs . Left . (\(x, _, _) -> x)) val' unsolved, generalized)), unsolved) -- Show warnings here, since types in wildcards might have been solved during -- instance resolution (by functional dependencies). finalState <- get forM_ tys $ \(shouldGeneralize, ((_, (_, _)), w)) -> do let replaceTypes' = replaceTypes (checkSubstitution finalState) runTypeSearch' = runTypeSearch (guard shouldGeneralize $> foldMap snd inferred) finalState (escalateWarningWhen isHoleError . tell . onErrorMessages (runTypeSearch' . replaceTypes')) w return (map fst inferred) where replaceTypes :: Substitution -> ErrorMessage -> ErrorMessage replaceTypes subst = onTypesInErrorMessage (substituteType subst) -- | Run type search to complete any typed hole error messages runTypeSearch :: Maybe [(Ident, InstanceContext, Constraint)] -- ^ Any unsolved constraints which we need to continue to satisfy -> CheckState -- ^ The final type checker state -> ErrorMessage -> ErrorMessage runTypeSearch cons st = \case ErrorMessage hints (HoleInferredType x ty y (TSBefore env)) -> let subst = checkSubstitution st searchResult = (fmap . fmap) (substituteType subst) (M.toList (typeSearch cons env st (substituteType subst ty))) in ErrorMessage hints (HoleInferredType x ty y (TSAfter searchResult)) other -> other -- | Generalize type vars using forall and add inferred constraints generalize unsolved = varIfUnknown . constrain unsolved -- | Add any unsolved constraints constrain [] = id constrain cs = ConstrainedType (map (\(_, _, x) -> x) cs) -- Apply the substitution that was returned from runUnify to both types and (type-annotated) values tidyUp ts sub = map (second (first (second (overTypes (substituteType sub) *** substituteType sub)))) ts isHoleError :: ErrorMessage -> Bool isHoleError (ErrorMessage _ HoleInferredType{}) = True isHoleError _ = False -- | A binding group contains multiple value definitions, some of which are typed -- and some which are not. -- -- This structure breaks down a binding group into typed and untyped parts. data SplitBindingGroup = SplitBindingGroup { _splitBindingGroupUntyped :: [(Ident, (Expr, Type))] -- ^ The untyped expressions , _splitBindingGroupTyped :: [(Ident, (Expr, Type, Bool))] -- ^ The typed expressions, along with their type annotations , _splitBindingGroupNames :: M.Map (Qualified Ident) (Type, NameKind, NameVisibility) -- ^ A map containing all expressions and their assigned types (which might be -- fresh unification variables). These will be added to the 'Environment' after -- the binding group is checked, so the value type of the 'Map' is chosen to be -- compatible with the type of 'bindNames'. } -- | This function breaks a binding group down into two sets of declarations: -- those which contain type annotations, and those which don't. -- This function also generates fresh unification variables for the types of -- declarations without type annotations, returned in the 'UntypedData' structure. typeDictionaryForBindingGroup :: (MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Maybe ModuleName -> [(Ident, Expr)] -> m SplitBindingGroup typeDictionaryForBindingGroup moduleName vals = do -- Filter the typed and untyped declarations and make a map of names to typed declarations. -- Replace type wildcards here so that the resulting dictionary of types contains the -- fully expanded types. let (untyped, typed) = partitionEithers (map splitTypeAnnotation vals) (typedDict, typed') <- fmap unzip . for typed $ \(ident, (expr, ty, checkType)) -> do ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty return ((ident, ty'), (ident, (expr, ty', checkType))) -- Create fresh unification variables for the types of untyped declarations (untypedDict, untyped') <- fmap unzip . for untyped $ \(ident, expr) -> do ty <- freshType return ((ident, ty), (ident, (expr, ty))) -- Create the dictionary of all name/type pairs, which will be added to the -- environment during type checking let dict = M.fromList [ (Qualified moduleName ident, (ty, Private, Undefined)) | (ident, ty) <- typedDict <> untypedDict ] return (SplitBindingGroup untyped' typed' dict) where -- | Check if a value contains a type annotation, and if so, separate it -- from the value itself. splitTypeAnnotation :: (Ident, Expr) -> Either (Ident, Expr) (Ident, (Expr, Type, Bool)) splitTypeAnnotation (name, TypedValue checkType value ty) = Right (name, (value, ty, checkType)) splitTypeAnnotation (name, PositionedValue pos c value) = bimap (second (PositionedValue pos c)) (second (\(e, t, b) -> (PositionedValue pos c e, t, b))) (splitTypeAnnotation (name, value)) splitTypeAnnotation (name, value) = Left (name, value) -- | Check the type annotation of a typed value in a binding group. checkTypedBindingGroupElement :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => ModuleName -> (Ident, (Expr, Type, Bool)) -- ^ The identifier we are trying to define, along with the expression and its type annotation -> M.Map (Qualified Ident) (Type, NameKind, NameVisibility) -- ^ Names brought into scope in this binding group -> m (Ident, (Expr, Type)) checkTypedBindingGroupElement mn (ident, (val, ty, checkType)) dict = do -- Kind check (kind, args) <- kindOfWithScopedVars ty checkTypeKind ty kind -- Check the type with the new names in scope val' <- if checkType then withScopedTypeVars mn args $ bindNames dict $ TypedValue True <$> check val ty <*> pure ty else return (TypedValue False val ty) return (ident, (val', ty)) -- | Infer a type for a value in a binding group which lacks an annotation. typeForBindingGroupElement :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => (Ident, (Expr, Type)) -- ^ The identifier we are trying to define, along with the expression and its assigned type -- (at this point, this should be a unification variable) -> M.Map (Qualified Ident) (Type, NameKind, NameVisibility) -- ^ Names brought into scope in this binding group -> m (Ident, (Expr, Type)) typeForBindingGroupElement (ident, (val, ty)) dict = do -- Infer the type with the new names in scope TypedValue _ val' ty' <- bindNames dict $ infer val -- Unify the type with the unification variable we chose for this definition unifyTypes ty ty' return (ident, (TypedValue True val' ty', ty')) -- | Check the kind of a type, failing if it is not of kind *. checkTypeKind :: MonadError MultipleErrors m => Type -> Kind -> m () checkTypeKind ty kind = guardWith (errorMessage (ExpectedType ty kind)) $ kind == kindType -- | Remove any ForAlls and ConstrainedType constructors in a type by introducing new unknowns -- or TypeClassDictionary values. -- -- This is necessary during type checking to avoid unifying a polymorphic type with a -- unification variable. instantiatePolyTypeWithUnknowns :: (MonadState CheckState m, MonadError MultipleErrors m) => Expr -> Type -> m (Expr, Type) instantiatePolyTypeWithUnknowns val (ForAll ident ty _) = do ty' <- replaceVarWithUnknown ident ty instantiatePolyTypeWithUnknowns val ty' instantiatePolyTypeWithUnknowns val (ConstrainedType constraints ty) = do dicts <- getTypeClassDictionaries hints <- gets checkHints instantiatePolyTypeWithUnknowns (foldl App val (map (\cs -> TypeClassDictionary cs dicts hints) constraints)) ty instantiatePolyTypeWithUnknowns val ty = return (val, ty) -- | Infer a type for a value, rethrowing any error to provide a more useful error message infer :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> m Expr infer val = withErrorMessageHint (ErrorInferringType val) $ infer' val -- | Infer a type for a value infer' :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> m Expr infer' v@(Literal (NumericLiteral (Left _))) = return $ TypedValue True v tyInt infer' v@(Literal (NumericLiteral (Right _))) = return $ TypedValue True v tyNumber infer' v@(Literal (StringLiteral _)) = return $ TypedValue True v tyString infer' v@(Literal (CharLiteral _)) = return $ TypedValue True v tyChar infer' v@(Literal (BooleanLiteral _)) = return $ TypedValue True v tyBoolean infer' (Literal (ArrayLiteral vals)) = do ts <- traverse infer vals els <- freshType ts' <- forM ts $ \(TypedValue ch val t) -> do (val', t') <- instantiatePolyTypeWithUnknowns val t unifyTypes els t' return (TypedValue ch val' t') return $ TypedValue True (Literal (ArrayLiteral ts')) (TypeApp tyArray els) infer' (Literal (ObjectLiteral ps)) = do ensureNoDuplicateProperties ps ts <- traverse (infer . snd) ps let fields = zipWith (\name (TypedValue _ _ t) -> (Label name, t)) (map fst ps) ts ty = TypeApp tyRecord $ rowFromList (fields, REmpty) return $ TypedValue True (Literal (ObjectLiteral (zip (map fst ps) ts))) ty infer' (ObjectUpdate o ps) = do ensureNoDuplicateProperties ps row <- freshType newVals <- zipWith (\(name, _) t -> (name, t)) ps <$> traverse (infer . snd) ps let newTys = map (\(name, TypedValue _ _ ty) -> (Label name, ty)) newVals oldTys <- zip (map (Label . fst) ps) <$> replicateM (length ps) freshType let oldTy = TypeApp tyRecord $ rowFromList (oldTys, row) o' <- TypedValue True <$> check o oldTy <*> pure oldTy return $ TypedValue True (ObjectUpdate o' newVals) $ TypeApp tyRecord $ rowFromList (newTys, row) infer' (Accessor prop val) = withErrorMessageHint (ErrorCheckingAccessor val prop) $ do field <- freshType rest <- freshType typed <- check val (TypeApp tyRecord (RCons (Label prop) field rest)) return $ TypedValue True (Accessor prop typed) field infer' (Abs (Left arg) ret) = do ty <- freshType withBindingGroupVisible $ bindLocalVariables [(arg, ty, Defined)] $ do body@(TypedValue _ _ bodyTy) <- infer' ret return $ TypedValue True (Abs (Left arg) body) $ function ty bodyTy infer' (Abs (Right _) _) = internalError "Binder was not desugared" infer' (App f arg) = do f'@(TypedValue _ _ ft) <- infer f (ret, app) <- checkFunctionApplication f' ft arg return $ TypedValue True app ret infer' (Var var) = do checkVisibility var ty <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards <=< lookupVariable $ var case ty of ConstrainedType constraints ty' -> do dicts <- getTypeClassDictionaries hints <- gets checkHints return $ TypedValue True (foldl App (Var var) (map (\cs -> TypeClassDictionary cs dicts hints) constraints)) ty' _ -> return $ TypedValue True (Var var) ty infer' v@(Constructor c) = do env <- getEnv case M.lookup c (dataConstructors env) of Nothing -> throwError . errorMessage . UnknownName . fmap DctorName $ c Just (_, _, ty, _) -> do (v', ty') <- sndM (introduceSkolemScope <=< replaceAllTypeSynonyms) <=< instantiatePolyTypeWithUnknowns v $ ty return $ TypedValue True v' ty' infer' (Case vals binders) = do (vals', ts) <- instantiateForBinders vals binders ret <- freshType binders' <- checkBinders ts ret binders return $ TypedValue True (Case vals' binders') ret infer' (IfThenElse cond th el) = do cond' <- check cond tyBoolean th'@(TypedValue _ _ thTy) <- infer th el'@(TypedValue _ _ elTy) <- infer el (th'', thTy') <- instantiatePolyTypeWithUnknowns th' thTy (el'', elTy') <- instantiatePolyTypeWithUnknowns el' elTy unifyTypes thTy' elTy' return $ TypedValue True (IfThenElse cond' th'' el'') thTy' infer' (Let ds val) = do (ds', val'@(TypedValue _ _ valTy)) <- inferLetBinding [] ds val infer return $ TypedValue True (Let ds' val') valTy infer' (DeferredDictionary className tys) = do dicts <- getTypeClassDictionaries hints <- gets checkHints return $ TypeClassDictionary (Constraint className tys Nothing) dicts hints infer' (TypedValue checkType val ty) = do Just moduleName <- checkCurrentModule <$> get (kind, args) <- kindOfWithScopedVars ty checkTypeKind ty kind ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty val' <- if checkType then withScopedTypeVars moduleName args (check val ty') else return val return $ TypedValue True val' ty' infer' (Hole name) = do ty <- freshType ctx <- getLocalContext env <- getEnv tell . errorMessage $ HoleInferredType name ty ctx (TSBefore env) return $ TypedValue True (Hole name) ty infer' (PositionedValue pos c val) = warnAndRethrowWithPositionTC pos $ do TypedValue t v ty <- infer' val return $ TypedValue t (PositionedValue pos c v) ty infer' v = internalError $ "Invalid argument to infer: " ++ show v inferLetBinding :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => [Declaration] -> [Declaration] -> Expr -> (Expr -> m Expr) -> m ([Declaration], Expr) inferLetBinding seen [] ret j = (,) seen <$> withBindingGroupVisible (j ret) inferLetBinding seen (ValueDeclaration ident nameKind [] (Right (tv@(TypedValue checkType val ty))) : rest) ret j = do Just moduleName <- checkCurrentModule <$> get (kind, args) <- kindOfWithScopedVars ty checkTypeKind ty kind let dict = M.singleton (Qualified Nothing ident) (ty, nameKind, Undefined) ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty TypedValue _ val' ty'' <- if checkType then withScopedTypeVars moduleName args (bindNames dict (check val ty')) else return tv bindNames (M.singleton (Qualified Nothing ident) (ty'', nameKind, Defined)) $ inferLetBinding (seen ++ [ValueDeclaration ident nameKind [] (Right (TypedValue checkType val' ty''))]) rest ret j inferLetBinding seen (ValueDeclaration ident nameKind [] (Right val) : rest) ret j = do valTy <- freshType let dict = M.singleton (Qualified Nothing ident) (valTy, nameKind, Undefined) TypedValue _ val' valTy' <- bindNames dict $ infer val unifyTypes valTy valTy' bindNames (M.singleton (Qualified Nothing ident) (valTy', nameKind, Defined)) $ inferLetBinding (seen ++ [ValueDeclaration ident nameKind [] (Right val')]) rest ret j inferLetBinding seen (BindingGroupDeclaration ds : rest) ret j = do Just moduleName <- checkCurrentModule <$> get SplitBindingGroup untyped typed dict <- typeDictionaryForBindingGroup Nothing (map (\(i, _, v) -> (i, v)) ds) ds1' <- parU typed $ \e -> checkTypedBindingGroupElement moduleName e dict ds2' <- forM untyped $ \e -> typeForBindingGroupElement e dict let ds' = [(ident, Private, val') | (ident, (val', _)) <- ds1' ++ ds2'] bindNames dict $ do makeBindingGroupVisible inferLetBinding (seen ++ [BindingGroupDeclaration ds']) rest ret j inferLetBinding seen (PositionedDeclaration pos com d : ds) ret j = warnAndRethrowWithPositionTC pos $ do (d' : ds', val') <- inferLetBinding seen (d : ds) ret j return (PositionedDeclaration pos com d' : ds', val') inferLetBinding _ _ _ _ = internalError "Invalid argument to inferLetBinding" -- | Infer the types of variables brought into scope by a binder inferBinder :: forall m . (MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Type -> Binder -> m (M.Map Ident Type) inferBinder _ NullBinder = return M.empty inferBinder val (LiteralBinder (StringLiteral _)) = unifyTypes val tyString >> return M.empty inferBinder val (LiteralBinder (CharLiteral _)) = unifyTypes val tyChar >> return M.empty inferBinder val (LiteralBinder (NumericLiteral (Left _))) = unifyTypes val tyInt >> return M.empty inferBinder val (LiteralBinder (NumericLiteral (Right _))) = unifyTypes val tyNumber >> return M.empty inferBinder val (LiteralBinder (BooleanLiteral _)) = unifyTypes val tyBoolean >> return M.empty inferBinder val (VarBinder name) = return $ M.singleton name val inferBinder val (ConstructorBinder ctor binders) = do env <- getEnv case M.lookup ctor (dataConstructors env) of Just (_, _, ty, _) -> do (_, fn) <- instantiatePolyTypeWithUnknowns (internalError "Data constructor types cannot contain constraints") ty fn' <- introduceSkolemScope <=< replaceAllTypeSynonyms $ fn let (args, ret) = peelArgs fn' unless (length args == length binders) . throwError . errorMessage $ IncorrectConstructorArity ctor unifyTypes ret val M.unions <$> zipWithM inferBinder (reverse args) binders _ -> throwError . errorMessage . UnknownName . fmap DctorName $ ctor where peelArgs :: Type -> ([Type], Type) peelArgs = go [] where go args (TypeApp (TypeApp fn arg) ret) | fn == tyFunction = go (arg : args) ret go args ret = (args, ret) inferBinder val (LiteralBinder (ObjectLiteral props)) = do row <- freshType rest <- freshType m1 <- inferRowProperties row rest props unifyTypes val (TypeApp tyRecord row) return m1 where inferRowProperties :: Type -> Type -> [(PSString, Binder)] -> m (M.Map Ident Type) inferRowProperties nrow row [] = unifyTypes nrow row >> return M.empty inferRowProperties nrow row ((name, binder):binders) = do propTy <- freshType m1 <- inferBinder propTy binder m2 <- inferRowProperties nrow (RCons (Label name) propTy row) binders return $ m1 `M.union` m2 inferBinder val (LiteralBinder (ArrayLiteral binders)) = do el <- freshType m1 <- M.unions <$> traverse (inferBinder el) binders unifyTypes val (TypeApp tyArray el) return m1 inferBinder val (NamedBinder name binder) = do m <- inferBinder val binder return $ M.insert name val m inferBinder val (PositionedBinder pos _ binder) = warnAndRethrowWithPositionTC pos $ inferBinder val binder -- TODO: When adding support for polymorphic types, check subsumption here, -- change the definition of `binderRequiresMonotype`, -- and use `kindOfWithScopedVars`. inferBinder val (TypedBinder ty binder) = do kind <- kindOf ty checkTypeKind ty kind ty1 <- replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty unifyTypes val ty1 inferBinder val binder inferBinder _ OpBinder{} = internalError "OpBinder should have been desugared before inferBinder" inferBinder _ BinaryNoParensBinder{} = internalError "BinaryNoParensBinder should have been desugared before inferBinder" inferBinder _ ParensInBinder{} = internalError "ParensInBinder should have been desugared before inferBinder" -- | Returns true if a binder requires its argument type to be a monotype. -- | If this is the case, we need to instantiate any polymorphic types before checking binders. binderRequiresMonotype :: Binder -> Bool binderRequiresMonotype NullBinder = False binderRequiresMonotype (VarBinder _) = False binderRequiresMonotype (NamedBinder _ b) = binderRequiresMonotype b binderRequiresMonotype (PositionedBinder _ _ b) = binderRequiresMonotype b binderRequiresMonotype _ = True -- | Instantiate polytypes only when necessitated by a binder. instantiateForBinders :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => [Expr] -> [CaseAlternative] -> m ([Expr], [Type]) instantiateForBinders vals cas = unzip <$> zipWithM (\val inst -> do TypedValue _ val' ty <- infer val if inst then instantiatePolyTypeWithUnknowns val' ty else return (val', ty)) vals shouldInstantiate where shouldInstantiate :: [Bool] shouldInstantiate = map (any binderRequiresMonotype) . transpose . map caseAlternativeBinders $ cas -- | -- Check the types of the return values in a set of binders in a case statement -- checkBinders :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => [Type] -> Type -> [CaseAlternative] -> m [CaseAlternative] checkBinders _ _ [] = return [] checkBinders nvals ret (CaseAlternative binders result : bs) = do guardWith (errorMessage $ OverlappingArgNames Nothing) $ let ns = concatMap binderNames binders in length (nub ns) == length ns m1 <- M.unions <$> zipWithM inferBinder nvals binders r <- bindLocalVariables [ (name, ty, Defined) | (name, ty) <- M.toList m1 ] $ CaseAlternative binders <$> case result of Left gs -> do gs' <- forM gs $ \(grd, val) -> do grd' <- withErrorMessageHint ErrorCheckingGuard $ check grd tyBoolean val' <- TypedValue True <$> check val ret <*> pure ret return (grd', val') return $ Left gs' Right val -> do val' <- TypedValue True <$> check val ret <*> pure ret return $ Right val' rs <- checkBinders nvals ret bs return $ r : rs -- | -- Check the type of a value, rethrowing errors to provide a better error message -- check :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> Type -> m Expr check val ty = withErrorMessageHint (ErrorCheckingType val ty) $ check' val ty -- | -- Check the type of a value -- check' :: forall m . (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> Type -> m Expr check' val (ForAll ident ty _) = do scope <- newSkolemScope sko <- newSkolemConstant let ss = case val of PositionedValue pos _ _ -> Just pos _ -> Nothing sk = skolemize ident sko scope ss ty skVal = skolemizeTypesInValue ident sko scope ss val val' <- check skVal sk return $ TypedValue True val' (ForAll ident ty (Just scope)) check' val t@(ConstrainedType constraints ty) = do dictNames <- forM constraints $ \(Constraint (Qualified _ (ProperName className)) _ _) -> freshIdent ("dict" <> className) dicts <- join <$> zipWithM (newDictionaries []) (map (Qualified Nothing) dictNames) constraints val' <- withBindingGroupVisible $ withTypeClassDictionaries dicts $ check val ty return $ TypedValue True (foldr (Abs . Left) val' dictNames) t check' val u@(TUnknown _) = do val'@(TypedValue _ _ ty) <- infer val -- Don't unify an unknown with an inferred polytype (val'', ty') <- instantiatePolyTypeWithUnknowns val' ty unifyTypes ty' u return $ TypedValue True val'' ty' check' v@(Literal (NumericLiteral (Left _))) t | t == tyInt = return $ TypedValue True v t check' v@(Literal (NumericLiteral (Right _))) t | t == tyNumber = return $ TypedValue True v t check' v@(Literal (StringLiteral _)) t | t == tyString = return $ TypedValue True v t check' v@(Literal (CharLiteral _)) t | t == tyChar = return $ TypedValue True v t check' v@(Literal (BooleanLiteral _)) t | t == tyBoolean = return $ TypedValue True v t check' (Literal (ArrayLiteral vals)) t@(TypeApp a ty) = do unifyTypes a tyArray array <- Literal . ArrayLiteral <$> forM vals (`check` ty) return $ TypedValue True array t check' (Abs (Left arg) ret) ty@(TypeApp (TypeApp t argTy) retTy) = do unifyTypes t tyFunction ret' <- withBindingGroupVisible $ bindLocalVariables [(arg, argTy, Defined)] $ check ret retTy return $ TypedValue True (Abs (Left arg) ret') ty check' (Abs (Right _) _) _ = internalError "Binder was not desugared" check' (App f arg) ret = do f'@(TypedValue _ _ ft) <- infer f (retTy, app) <- checkFunctionApplication f' ft arg elaborate <- subsumes retTy ret return $ TypedValue True (elaborate app) ret check' v@(Var var) ty = do checkVisibility var repl <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< lookupVariable $ var ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty elaborate <- subsumes repl ty' return $ TypedValue True (elaborate v) ty' check' (DeferredDictionary className tys) _ = do {- -- Here, we replace a placeholder for a superclass dictionary with a regular -- TypeClassDictionary placeholder. The reason we do this is that it is necessary to have the -- correct super instance dictionaries in scope, and these are not available when the type class -- declaration gets desugared. -} dicts <- getTypeClassDictionaries hints <- gets checkHints return $ TypeClassDictionary (Constraint className tys Nothing) dicts hints check' (TypedValue checkType val ty1) ty2 = do Just moduleName <- checkCurrentModule <$> get (kind, args) <- kindOfWithScopedVars ty1 checkTypeKind ty1 kind ty1' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty1 ty2' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty2 _ <- subsumes ty1' ty2' val' <- if checkType then withScopedTypeVars moduleName args (check val ty2') else return val return $ TypedValue checkType val' ty2' check' (Case vals binders) ret = do (vals', ts) <- instantiateForBinders vals binders binders' <- checkBinders ts ret binders return $ TypedValue True (Case vals' binders') ret check' (IfThenElse cond th el) ty = do cond' <- check cond tyBoolean th' <- check th ty el' <- check el ty return $ TypedValue True (IfThenElse cond' th' el') ty check' e@(Literal (ObjectLiteral ps)) t@(TypeApp obj row) | obj == tyRecord = do ensureNoDuplicateProperties ps ps' <- checkProperties e ps row False return $ TypedValue True (Literal (ObjectLiteral ps')) t check' (TypeClassDictionaryConstructorApp name ps) t = do ps' <- check' ps t return $ TypedValue True (TypeClassDictionaryConstructorApp name ps') t check' e@(ObjectUpdate obj ps) t@(TypeApp o row) | o == tyRecord = do ensureNoDuplicateProperties ps -- We need to be careful to avoid duplicate labels here. -- We check _obj_ against the type _t_ with the types in _ps_ replaced with unknowns. let (propsToCheck, rest) = rowToList row (removedProps, remainingProps) = partition (\(p, _) -> p `elem` map (Label . fst) ps) propsToCheck us <- zip (map fst removedProps) <$> replicateM (length ps) freshType obj' <- check obj (TypeApp tyRecord (rowFromList (us ++ remainingProps, rest))) ps' <- checkProperties e ps row True return $ TypedValue True (ObjectUpdate obj' ps') t check' (Accessor prop val) ty = withErrorMessageHint (ErrorCheckingAccessor val prop) $ do rest <- freshType val' <- check val (TypeApp tyRecord (RCons (Label prop) ty rest)) return $ TypedValue True (Accessor prop val') ty check' v@(Constructor c) ty = do env <- getEnv case M.lookup c (dataConstructors env) of Nothing -> throwError . errorMessage . UnknownName . fmap DctorName $ c Just (_, _, ty1, _) -> do repl <- introduceSkolemScope <=< replaceAllTypeSynonyms $ ty1 elaborate <- subsumes repl ty return $ TypedValue True (elaborate v) ty check' (Let ds val) ty = do (ds', val') <- inferLetBinding [] ds val (`check` ty) return $ TypedValue True (Let ds' val') ty check' val kt@(KindedType ty kind) = do checkTypeKind ty kind val' <- check' val ty return $ TypedValue True val' kt check' (PositionedValue pos c val) ty = warnAndRethrowWithPositionTC pos $ do TypedValue t v ty' <- check' val ty return $ TypedValue t (PositionedValue pos c v) ty' check' val ty = do TypedValue _ val' ty' <- infer val elaborate <- subsumes ty' ty return $ TypedValue True (elaborate val') ty -- | -- Check the type of a collection of named record fields -- -- The @lax@ parameter controls whether or not every record member has to be provided. For object updates, this is not the case. -- checkProperties :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> [(PSString, Expr)] -> Type -> Bool -> m [(PSString, Expr)] checkProperties expr ps row lax = let (ts, r') = rowToList row in go ps ts r' where go [] [] REmpty = return [] go [] [] u@(TUnknown _) | lax = return [] | otherwise = do unifyTypes u REmpty return [] go [] [] Skolem{} | lax = return [] go [] ((p, _): _) _ | lax = return [] | otherwise = throwError . errorMessage $ PropertyIsMissing p go ((p,_):_) [] REmpty = throwError . errorMessage $ AdditionalProperty $ Label p go ((p,v):ps') ts r = case lookup (Label p) ts of Nothing -> do v'@(TypedValue _ _ ty) <- infer v rest <- freshType unifyTypes r (RCons (Label p) ty rest) ps'' <- go ps' ts rest return $ (p, v') : ps'' Just ty -> do v' <- check v ty ps'' <- go ps' (delete (Label p, ty) ts) r return $ (p, v') : ps'' go _ _ _ = throwError . errorMessage $ ExprDoesNotHaveType expr (TypeApp tyRecord row) -- | Check the type of a function application, rethrowing errors to provide a better error message. -- -- This judgment takes three inputs: -- -- * The expression of the function we are applying -- * The type of that function -- * The expression we are applying it to -- -- and synthesizes two outputs: -- -- * The return type -- * The elaborated expression for the function application (since we might need to -- insert type class dictionaries, etc.) checkFunctionApplication :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -- ^ The function expression -> Type -- ^ The type of the function -> Expr -- ^ The argument expression -> m (Type, Expr) -- ^ The result type, and the elaborated term checkFunctionApplication fn fnTy arg = withErrorMessageHint (ErrorInApplication fn fnTy arg) $ do subst <- gets checkSubstitution checkFunctionApplication' fn (substituteType subst fnTy) arg -- | Check the type of a function application checkFunctionApplication' :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> Type -> Expr -> m (Type, Expr) checkFunctionApplication' fn (TypeApp (TypeApp tyFunction' argTy) retTy) arg = do unifyTypes tyFunction' tyFunction arg' <- check arg argTy return (retTy, App fn arg') checkFunctionApplication' fn (ForAll ident ty _) arg = do replaced <- replaceVarWithUnknown ident ty checkFunctionApplication fn replaced arg checkFunctionApplication' fn (KindedType ty _) arg = checkFunctionApplication fn ty arg checkFunctionApplication' fn (ConstrainedType constraints fnTy) arg = do dicts <- getTypeClassDictionaries hints <- gets checkHints checkFunctionApplication' (foldl App fn (map (\cs -> TypeClassDictionary cs dicts hints) constraints)) fnTy arg checkFunctionApplication' fn fnTy dict@TypeClassDictionary{} = return (fnTy, App fn dict) checkFunctionApplication' fn u arg = do arg' <- do TypedValue _ arg' t <- infer arg (arg'', t') <- instantiatePolyTypeWithUnknowns arg' t return $ TypedValue True arg'' t' let ty = (\(TypedValue _ _ t) -> t) arg' ret <- freshType unifyTypes u (function ty ret) return (ret, App fn arg') -- | -- Ensure a set of property names and value does not contain duplicate labels -- ensureNoDuplicateProperties :: (MonadError MultipleErrors m) => [(PSString, Expr)] -> m () ensureNoDuplicateProperties ps = let ls = map fst ps in case ls \\ nub ls of l : _ -> throwError . errorMessage $ DuplicateLabel (Label l) Nothing _ -> return ()