----------------------------------------------------------------------------- -- | -- Module : Test.StateMachine.Z -- Copyright : (C) 2017, ATS Advanced Telematic Systems GmbH -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Stevan Andjelkovic -- Stability : provisional -- Portability : portable -- -- This module contains Z-inspried combinators for working with relations. The -- idea is that they can be used to define concise and showable models. This -- module is an experiment and will likely change or move to its own package. -- ----------------------------------------------------------------------------- module Test.StateMachine.Z where import qualified Data.List as List ------------------------------------------------------------------------ union :: Eq a => [a] -> [a] -> [a] union = List.union intersect :: Eq a => [a] -> [a] -> [a] intersect = List.intersect isSubsetOf :: Eq a => [a] -> [a] -> Bool r `isSubsetOf` s = r == r `intersect` s (~=) :: Eq a => [a] -> [a] -> Bool xs ~= ys = xs `isSubsetOf` ys && ys `isSubsetOf` xs ------------------------------------------------------------------------ -- | Relations. type Rel a b = [(a, b)] -- | (Partial) functions. type Fun a b = Rel a b ------------------------------------------------------------------------ empty :: Rel a b empty = [] identity :: [a] -> Rel a a identity xs = [ (x, x) | x <- xs ] singleton :: a -> b -> Rel a b singleton x y = [(x, y)] domain :: Rel a b -> [a] domain xys = [ x | (x, _) <- xys ] codomain :: Rel a b -> [b] codomain xys = [ y | (_, y) <- xys ] compose :: Eq b => Rel b c -> Rel a b -> Rel a c compose yzs xys = [ (x, z) | (x, y) <- xys , (y', z) <- yzs , y == y' ] fcompose :: Eq b => Rel a b -> Rel b c -> Rel a c fcompose r s = compose s r inverse :: Rel a b -> Rel b a inverse xys = [ (y, x) | (x, y) <- xys ] lookupDom :: Eq a => a -> Rel a b -> [b] lookupDom x xys = xys >>= \(x', y) -> [ y | x == x' ] lookupCod :: Eq b => b -> Rel a b -> [a] lookupCod y xys = xys >>= \(x, y') -> [ x | y == y' ] ------------------------------------------------------------------------ -- | Domain restriction. -- -- >>> ['a'] <| [ ('a', "apa"), ('b', "bepa") ] -- [('a',"apa")] -- (<|) :: Eq a => [a] -> Rel a b -> Rel a b xs <| xys = [ (x, y) | (x, y) <- xys, x `elem` xs ] -- | Codomain restriction. -- -- >>> [ ('a', "apa"), ('b', "bepa") ] |> ["apa"] -- [('a',"apa")] -- (|>) :: Eq b => Rel a b -> [b] -> Rel a b xys |> ys = [ (x, y) | (x, y) <- xys, y `elem` ys ] -- | Domain substraction. -- -- >>> ['a'] <-| [ ('a', "apa"), ('b', "bepa") ] -- [('b',"bepa")] -- (<-|) :: Eq a => [a] -> Rel a b -> Rel a b xs <-| xys = [ (x, y) | (x, y) <- xys, x `notElem` xs ] -- | Codomain substraction. -- -- >>> [ ('a', "apa"), ('b', "bepa") ] |-> ["apa"] -- [('b',"bepa")] -- (|->) :: Eq b => Rel a b -> [b] -> Rel a b xys |-> ys = [ (x, y) | (x, y) <- xys, y `notElem` ys ] -- | The image of a relation. image :: Eq a => Rel a b -> [a] -> [b] image r xs = codomain (xs <| r) -- | Overriding. -- -- >>> [('a', "apa")] <+ [('a', "bepa")] -- [('a',"bepa")] -- -- >>> [('a', "apa")] <+ [('b', "bepa")] -- [('a',"apa"),('b',"bepa")] -- (<+) :: (Eq a, Eq b) => Rel a b -> Rel a b -> Rel a b r <+ s = domain s <-| r `union` s -- | Direct product. (<**>) :: Eq a => Rel a b -> Rel a c -> Rel a (b, c) xys <**> xzs = [ (x, (y, z)) | (x , y) <- xys , (x', z) <- xzs , x == x' ] -- | Parallel product. (<||>) :: Rel a c -> Rel b d -> Rel (a, b) (c, d) acs <||> bds = [ ((a, b), (c, d)) | (a, c) <- acs , (b, d) <- bds ] ------------------------------------------------------------------------ isTotalRel :: Eq a => Rel a b -> [a] -> Bool isTotalRel r xs = domain r ~= xs isSurjRel :: Eq b => Rel a b -> [b] -> Bool isSurjRel r ys = codomain r ~= ys isTotalSurjRel :: (Eq a, Eq b) => Rel a b -> [a] -> [b] -> Bool isTotalSurjRel r xs ys = isTotalRel r xs && isSurjRel r ys isPartialFun :: (Eq a, Eq b) => Rel a b -> Bool isPartialFun f = (f `compose` inverse f) ~= identity (codomain f) isTotalFun :: (Eq a, Eq b) => Rel a b -> [a] -> Bool isTotalFun r xs = isPartialFun r && isTotalRel r xs isPartialInj :: (Eq a, Eq b) => Rel a b -> Bool isPartialInj r = isPartialFun r && isPartialFun (inverse r) isTotalInj :: (Eq a, Eq b) => Rel a b -> [a] -> Bool isTotalInj r xs = isTotalFun r xs && isPartialFun (inverse r) isPartialSurj :: (Eq a, Eq b) => Rel a b -> [b] -> Bool isPartialSurj r ys = isPartialFun r && isSurjRel r ys isTotalSurj :: (Eq a, Eq b) => Rel a b -> [a] -> [b] -> Bool isTotalSurj r xs ys = isTotalFun r xs && isSurjRel r ys isBijection :: (Eq a, Eq b) => Rel a b -> [a] -> [b] -> Bool isBijection r xs ys = isTotalInj r xs && isTotalSurj r xs ys -- | Application. (!) :: (Eq a, Show a, Show b) => Fun a b -> a -> b f ! x = maybe (error msg) Prelude.id (lookup x f) where msg = "!: failed to lookup `" ++ show x ++ "' in `" ++ show f ++ "'" (.%) :: (Eq a, Eq b, Show a, Show b) => (Fun a b, a) -> (b -> b) -> Fun a b (f, x) .% g = f .! x .= g (f ! x) ------------------------------------------------------------------------ (.!) :: Rel a b -> a -> (Rel a b, a) f .! x = (f, x) -- | Assignment. -- -- >>> singleton 'a' "apa" .! 'a' .= "bepa" -- [('a',"bepa")] -- -- >>> singleton 'a' "apa" .! 'b' .= "bepa" -- [('a',"apa"),('b',"bepa")] -- (.=) :: (Eq a, Eq b) => (Rel a b, a) -> b -> Rel a b (f, x) .= y = f <+ singleton x y