Copyright | Written by David Himmelstrup |
---|---|

License | Unlicense |

Maintainer | lemmih@gmail.com |

Stability | experimental |

Portability | POSIX |

Safe Haskell | None |

Language | Haskell2010 |

## Synopsis

- linear :: Morph
- rawLinear :: Morph
- closestLinearCorrespondence :: PointCorrespondence
- closestLinearCorrespondenceA :: (Real a, Fractional a, Epsilon a) => APolygon a -> APolygon a -> (APolygon a, APolygon a)
- linearTrajectory :: Trajectory

# Documentation

Linear interpolation strategy.

Example:

`playThenReverseA`

$`pauseAround`

0.5 0.5 $`mkAnimation`

3 $ \t ->`withStrokeLineJoin`

`JoinRound`

$ let src =`scale`

8 $`center`

$`latex`

"X" dst =`scale`

8 $`center`

$`latex`

"H" in`morph`

`linear`

src dst t

Linear interpolation strategy without realigning corners. May give better results if the polygons are already aligned. Usually gives worse results.

Example:

`playThenReverseA`

$`pauseAround`

0.5 0.5 $`mkAnimation`

3 $ \t ->`withStrokeLineJoin`

`JoinRound`

$ let src =`scale`

8 $`center`

$`latex`

"X" dst =`scale`

8 $`center`

$`latex`

"H" in`morph`

`rawLinear`

src dst t

closestLinearCorrespondence :: PointCorrespondence Source #

Cycle polygons until the sum of the point trajectory path lengths is smallest.

closestLinearCorrespondenceA :: (Real a, Fractional a, Epsilon a) => APolygon a -> APolygon a -> (APolygon a, APolygon a) Source #

Cycle polygons until the sum of the point trajectory path lengths is smallest.

linearTrajectory :: Trajectory Source #

Strategy for moving points in a linear (straight-line) trajectory.