{-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE UnicodeSyntax #-} {-| Copyright : Written by David Himmelstrup License : Unlicense Maintainer : lemmih@gmail.com Stability : experimental Portability : POSIX -} module Reanimate.Morph.Common ( PointCorrespondence , Trajectory , ObjectCorrespondence , Morph(..) , morph , splitObjectCorrespondence , dupObjectCorrespondence , genesisObjectCorrespondence , toShapes , normalizePolygons , annotatePolygons , unsafeSVGToPolygon ) where import Control.Lens import qualified Data.Vector as V import Graphics.SvgTree (DrawAttributes, Texture (..), drawAttributes, fillColor, fillOpacity, groupOpacity, strokeColor, strokeOpacity) import Linear.V2 import Reanimate.Animation import Reanimate.ColorComponents import Reanimate.Ease import Reanimate.Math.Polygon (APolygon, Epsilon, Polygon, mkPolygon, pAddPoints, pCentroid, pCutEqual, pSize, polygonPoints) import Reanimate.PolyShape import Reanimate.Svg -- import Debug.Trace -- Correspondence -- Trajectory -- Color interpolation -- Polygon holes -- Polygon splitting -- Graphical polygon? FIXME: Come up with a better name. type GPolygon = (DrawAttributes, Polygon) -- | Method determining how points in the source polygon align with -- points in the target polygon. type PointCorrespondence = Polygon → Polygon → (Polygon, Polygon) -- | Method for interpolating between two aligned polygons. type Trajectory = (Polygon, Polygon) → (Double → Polygon) -- | Method for pairing sets of polygons. type ObjectCorrespondence = [GPolygon] → [GPolygon] → [(GPolygon, GPolygon)] -- | Morphing strategy data Morph = Morph { morphTolerance :: Double -- ^ Morphing curves is not always possible and -- sometimes shapes are reduced to polygons or meta-curves. -- This parameter determined the accuracy of this transformation. , morphColorComponents :: ColorComponents -- ^ Color components used for color interpolation. LAB is usually -- the best option here. , morphPointCorrespondence :: PointCorrespondence -- ^ Desired point-correspondence algorithm. , morphTrajectory :: Trajectory -- ^ Desired interpolation algorithm. , morphObjectCorrespondence :: ObjectCorrespondence -- ^ Desired object-correspondence algorithm. } {-# INLINE morph #-} -- | Apply morphing strategy to interpolate between two SVG images. morph :: Morph -> SVG -> SVG -> Double -> SVG morph Morph{..} src dst = \t -> case t of 0 -> lowerTransformations src 1 -> lowerTransformations dst _ -> mkGroup [ render (genPoints t) & drawAttributes .~ genAttrs t | (genAttrs, genPoints) <- gens ] where render p = mkLinePathClosed [ (x,y) | V2 x y <- map (fmap realToFrac) $ V.toList $ polygonPoints p ] srcShapes = toShapes morphTolerance src dstShapes = toShapes morphTolerance dst pairs = morphObjectCorrespondence srcShapes dstShapes gens = [ (interpolateAttrs morphColorComponents srcAttr dstAttr, morphTrajectory arranged) | ((srcAttr, srcPoly'), (dstAttr, dstPoly')) <- pairs , let arranged = morphPointCorrespondence srcPoly' dstPoly' ] -- | Add points to each polygon such that they end up with same size. normalizePolygons :: (Real a, Fractional a, Epsilon a) => APolygon a -> APolygon a -> (APolygon a, APolygon a) normalizePolygons src dst = (pAddPoints (max 0 $ dstN-srcN) src ,pAddPoints (max 0 $ srcN-dstN) dst) where srcN = pSize src dstN = pSize dst interpolateAttrs :: ColorComponents -> DrawAttributes -> DrawAttributes -> Double -> DrawAttributes interpolateAttrs colorComps src dst t = src & fillColor .~ (interpColor <$> src^.fillColor <*> dst^.fillColor) & strokeColor .~ (interpColor <$> src^.strokeColor <*> dst^.strokeColor) & fillOpacity .~ (interpOpacity <$> src^.fillOpacity <*> dst^.fillOpacity) & groupOpacity .~ (interpOpacity <$> src^.groupOpacity <*> dst^.groupOpacity) & strokeOpacity .~ (interpOpacity <$> src^.strokeOpacity <*> dst^.strokeOpacity) where interpColor (ColorRef a) (ColorRef b) = ColorRef $ interpolateRGBA8 colorComps a b t -- interpolateColor (ColorRef a) FillNone = ColorRef a interpColor a _ = a interpOpacity a b = realToFrac (fromToS (realToFrac a) (realToFrac b) t) -- | Object-correspondence algorithm that spawn objects as necessary. genesisObjectCorrespondence :: ObjectCorrespondence genesisObjectCorrespondence left right = case (left, right) of ([] , []) -> [] ([], (y1,y2):ys) -> ((y1,y2), (y1, emptyFrom y2 y2)) : genesisObjectCorrespondence [] ys ((x1,x2):xs, []) -> ((x1,x2), (x1, emptyFrom x2 x2)) : genesisObjectCorrespondence xs [] (x:xs, y:ys) -> (x,y) : genesisObjectCorrespondence xs ys where emptyFrom a b = mkPolygon $ V.map (const $ pCentroid a) (polygonPoints b) -- | Object-correspondence algorithm that duplicate objects as necessary. dupObjectCorrespondence :: ObjectCorrespondence dupObjectCorrespondence left right = case (left, right) of (_, []) -> [] ([], _) -> [] ([x], [y]) -> [(x,y)] ([(x1,x2)], yShapes) -> let x2s = replicate (length yShapes) x2 in dupObjectCorrespondence (map (x1,) x2s) yShapes (xShapes, [(y1,y2)]) -> let y2s = replicate (length xShapes) y2 in dupObjectCorrespondence xShapes (map (y1,) y2s) (x:xs, y:ys) -> (x, y) : dupObjectCorrespondence xs ys -- | Object-correspondence algorithm that splits objects in smaller pieces -- as necessary. splitObjectCorrespondence :: ObjectCorrespondence -- splitObjectCorrespondence = dupObjectCorrespondence splitObjectCorrespondence left right = case (left, right) of (_, []) -> [] ([], _) -> [] ([x], [y]) -> [(x,y)] ([(x1,x2)], yShapes) -> let x2s = splitPolygon (length yShapes) x2 in splitObjectCorrespondence (map (x1,) x2s) yShapes (xShapes, [(y1,y2)]) -> let y2s = splitPolygon (length xShapes) y2 in splitObjectCorrespondence xShapes (map (y1,) y2s) (x:xs, y:ys) -> (x,y) : splitObjectCorrespondence xs ys splitPolygon :: Int -> Polygon -> [Polygon] splitPolygon 1 p = [p] splitPolygon n p = let (a,b) = pCutEqual p in splitPolygon (n`div`2) a ++ splitPolygon ((n+1)`div`2) b -- joinPairs :: Correspondence -> [(DrawAttributes, PolyShape)] -> [(DrawAttributes, PolyShape)] -- -> [(DrawAttributes, DrawAttributes, [(RPoint, RPoint)])] -- joinPairs _ _ [] = [] -- joinPairs _ [] _ = [] -- joinPairs corr [(x1,x2)] [(y1,y2)] = -- [(x1,y1, corr x2 y2)] -- joinPairs corr [(x1,x2)] yShapes = -- let x2s = splitPolyShape 0.001 (length yShapes) x2 -- in joinPairs corr (map (x1,) x2s) yShapes -- joinPairs corr xShapes [(y1,y2)] = -- let y2s = reverse $ splitPolyShape 0.001 (length xShapes) y2 -- in joinPairs corr xShapes (map (y1,) y2s) -- joinPairs corr ((x1,x2):xs) ((y1,y2):ys) = -- (x1,y1, corr x2 y2) : joinPairs corr xs ys -- joinPairs _ _ _ = [] -- FIXME: sort by size, smallest to largest -- | Extract shapes and their graphical attributes from an SVG node. toShapes :: Double -> SVG -> [(DrawAttributes, Polygon)] toShapes tol src = [ (attrs, plToPolygon tol shape) | (_, attrs, glyph) <- svgGlyphs $ lowerTransformations $ pathify src , shape <- map mergePolyShapeHoles $ plGroupShapes $ svgToPolyShapes glyph ] -- | Extract the first polygon in an SVG node. Will fail if there -- are no acceptable shapes. unsafeSVGToPolygon :: Double -> SVG -> Polygon unsafeSVGToPolygon tol src = snd $ head $ toShapes tol src -- | Map over each polygon in an SVG node. annotatePolygons :: (Polygon -> SVG) -> SVG -> SVG annotatePolygons fn svg = mkGroup [ fn poly & drawAttributes .~ attr | (attr, poly) <- toShapes 0.001 svg ]