recursion-2.2.0.0: A recursion schemes library for GHC.

Safe HaskellNone
LanguageHaskell2010

Control.Recursion

Contents

Synopsis

Typeclasses

type family Base t :: * -> * Source #

Instances
type Base Natural Source # 
Instance details

Defined in Control.Recursion

type Base [a] Source # 
Instance details

Defined in Control.Recursion

type Base [a] = ListF a
type Base (NonEmpty a) Source # 
Instance details

Defined in Control.Recursion

type Base (NonEmpty a) = NonEmptyF a
type Base (Mu f) Source # 
Instance details

Defined in Control.Recursion

type Base (Mu f) = f
type Base (Nu f) Source # 
Instance details

Defined in Control.Recursion

type Base (Nu f) = f
type Base (Fix f) Source # 
Instance details

Defined in Control.Recursion

type Base (Fix f) = f
type Base (Fix f) Source # 
Instance details

Defined in Control.Recursion

type Base (Fix f) = f

class Functor (Base t) => Recursive t where Source #

Methods

project :: t -> Base t t Source #

Instances
Recursive Natural Source # 
Instance details

Defined in Control.Recursion

Recursive [a] Source # 
Instance details

Defined in Control.Recursion

Methods

project :: [a] -> Base [a] [a] Source #

Recursive (NonEmpty a) Source # 
Instance details

Defined in Control.Recursion

Methods

project :: NonEmpty a -> Base (NonEmpty a) (NonEmpty a) Source #

Functor f => Recursive (Mu f) Source # 
Instance details

Defined in Control.Recursion

Methods

project :: Mu f -> Base (Mu f) (Mu f) Source #

Functor f => Recursive (Nu f) Source # 
Instance details

Defined in Control.Recursion

Methods

project :: Nu f -> Base (Nu f) (Nu f) Source #

Functor f => Recursive (Fix f) Source # 
Instance details

Defined in Control.Recursion

Methods

project :: Fix f -> Base (Fix f) (Fix f) Source #

class Functor (Base t) => Corecursive t where Source #

Methods

embed :: Base t t -> t Source #

Instances
Corecursive Natural Source # 
Instance details

Defined in Control.Recursion

Corecursive [a] Source # 
Instance details

Defined in Control.Recursion

Methods

embed :: Base [a] [a] -> [a] Source #

Corecursive (NonEmpty a) Source # 
Instance details

Defined in Control.Recursion

Methods

embed :: Base (NonEmpty a) (NonEmpty a) -> NonEmpty a Source #

Functor f => Corecursive (Mu f) Source # 
Instance details

Defined in Control.Recursion

Methods

embed :: Base (Mu f) (Mu f) -> Mu f Source #

Functor f => Corecursive (Nu f) Source # 
Instance details

Defined in Control.Recursion

Methods

embed :: Base (Nu f) (Nu f) -> Nu f Source #

Functor f => Corecursive (Fix f) Source # 
Instance details

Defined in Control.Recursion

Methods

embed :: Base (Fix f) (Fix f) -> Fix f Source #

Types

newtype Fix f Source #

Constructors

Fix 

Fields

Instances
Functor f => Corecursive (Fix f) Source # 
Instance details

Defined in Control.Recursion

Methods

embed :: Base (Fix f) (Fix f) -> Fix f Source #

Functor f => Recursive (Fix f) Source # 
Instance details

Defined in Control.Recursion

Methods

project :: Fix f -> Base (Fix f) (Fix f) Source #

type Base (Fix f) Source # 
Instance details

Defined in Control.Recursion

type Base (Fix f) = f
type Base (Fix f) Source # 
Instance details

Defined in Control.Recursion

type Base (Fix f) = f

newtype Mu f Source #

Constructors

Mu (forall a. (f a -> a) -> a) 
Instances
Functor f => Corecursive (Mu f) Source # 
Instance details

Defined in Control.Recursion

Methods

embed :: Base (Mu f) (Mu f) -> Mu f Source #

Functor f => Recursive (Mu f) Source # 
Instance details

Defined in Control.Recursion

Methods

project :: Mu f -> Base (Mu f) (Mu f) Source #

type Base (Mu f) Source # 
Instance details

Defined in Control.Recursion

type Base (Mu f) = f

data Nu f Source #

Constructors

Nu (a -> f a) a 
Instances
Functor f => Corecursive (Nu f) Source # 
Instance details

Defined in Control.Recursion

Methods

embed :: Base (Nu f) (Nu f) -> Nu f Source #

Functor f => Recursive (Nu f) Source # 
Instance details

Defined in Control.Recursion

Methods

project :: Nu f -> Base (Nu f) (Nu f) Source #

type Base (Nu f) Source # 
Instance details

Defined in Control.Recursion

type Base (Nu f) = f

data ListF a b Source #

Base functor for a list of type [a].

Constructors

Cons a b 
Nil 
Instances
Functor (ListF a) Source # 
Instance details

Defined in Control.Recursion

Methods

fmap :: (a0 -> b) -> ListF a a0 -> ListF a b #

(<$) :: a0 -> ListF a b -> ListF a a0 #

Foldable (ListF a) Source # 
Instance details

Defined in Control.Recursion

Methods

fold :: Monoid m => ListF a m -> m #

foldMap :: Monoid m => (a0 -> m) -> ListF a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> ListF a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> ListF a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> ListF a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> ListF a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> ListF a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> ListF a a0 -> a0 #

toList :: ListF a a0 -> [a0] #

null :: ListF a a0 -> Bool #

length :: ListF a a0 -> Int #

elem :: Eq a0 => a0 -> ListF a a0 -> Bool #

maximum :: Ord a0 => ListF a a0 -> a0 #

minimum :: Ord a0 => ListF a a0 -> a0 #

sum :: Num a0 => ListF a a0 -> a0 #

product :: Num a0 => ListF a a0 -> a0 #

Traversable (ListF a) Source # 
Instance details

Defined in Control.Recursion

Methods

traverse :: Applicative f => (a0 -> f b) -> ListF a a0 -> f (ListF a b) #

sequenceA :: Applicative f => ListF a (f a0) -> f (ListF a a0) #

mapM :: Monad m => (a0 -> m b) -> ListF a a0 -> m (ListF a b) #

sequence :: Monad m => ListF a (m a0) -> m (ListF a a0) #

data NonEmptyF a b Source #

Constructors

NonEmptyF a (Maybe b) 
Instances
Functor (NonEmptyF a) Source # 
Instance details

Defined in Control.Recursion

Methods

fmap :: (a0 -> b) -> NonEmptyF a a0 -> NonEmptyF a b #

(<$) :: a0 -> NonEmptyF a b -> NonEmptyF a a0 #

Foldable (NonEmptyF a) Source # 
Instance details

Defined in Control.Recursion

Methods

fold :: Monoid m => NonEmptyF a m -> m #

foldMap :: Monoid m => (a0 -> m) -> NonEmptyF a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> NonEmptyF a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> NonEmptyF a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> NonEmptyF a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> NonEmptyF a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> NonEmptyF a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> NonEmptyF a a0 -> a0 #

toList :: NonEmptyF a a0 -> [a0] #

null :: NonEmptyF a a0 -> Bool #

length :: NonEmptyF a a0 -> Int #

elem :: Eq a0 => a0 -> NonEmptyF a a0 -> Bool #

maximum :: Ord a0 => NonEmptyF a a0 -> a0 #

minimum :: Ord a0 => NonEmptyF a a0 -> a0 #

sum :: Num a0 => NonEmptyF a a0 -> a0 #

product :: Num a0 => NonEmptyF a a0 -> a0 #

Traversable (NonEmptyF a) Source # 
Instance details

Defined in Control.Recursion

Methods

traverse :: Applicative f => (a0 -> f b) -> NonEmptyF a a0 -> f (NonEmptyF a b) #

sequenceA :: Applicative f => NonEmptyF a (f a0) -> f (NonEmptyF a a0) #

mapM :: Monad m => (a0 -> m b) -> NonEmptyF a a0 -> m (NonEmptyF a b) #

sequence :: Monad m => NonEmptyF a (m a0) -> m (NonEmptyF a a0) #

Recursion schemes

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b Source #

Hylomorphism; fold a structure while buildiung it up.

prepro :: (Recursive t, Corecursive t) => (Base t t -> Base t t) -> (Base t a -> a) -> t -> a Source #

Prepromorphism. Fold a structure while applying a natural transformation at each step.

postpro :: (Recursive t, Corecursive t) => (Base t t -> Base t t) -> (a -> Base t a) -> a -> t Source #

Postpromorphism. Build up a structure, applying a natural transformation along the way.

mutu :: Recursive t => (Base t (a, a) -> a) -> (Base t (a, a) -> a) -> t -> a Source #

A mutumorphism.

zygo :: Recursive t => (Base t b -> b) -> (Base t (b, a) -> a) -> t -> a Source #

Zygomorphism (see here for a neat example)

para :: (Recursive t, Corecursive t) => (Base t (t, a) -> a) -> t -> a Source #

Paramorphism

apo :: Corecursive t => (a -> Base t (Either t a)) -> a -> t Source #

Apomorphism. Compare micro.

elgot :: Functor f => (f a -> a) -> (b -> Either a (f b)) -> b -> a Source #

Elgot algebra (see this paper)

coelgot :: Functor f => ((a, f b) -> b) -> (a -> f a) -> a -> b Source #

Co-(Elgot algebra)

micro :: Corecursive a => (b -> Either a (Base a b)) -> b -> a Source #

Anamorphism allowing shortcuts. Compare apo

meta :: (Corecursive t', Recursive t) => (a -> Base t' a) -> (b -> a) -> (Base t b -> b) -> t -> t' Source #

Gibbons' metamorphism. Tear down a structure, transform it, and then build up a new structure

meta' :: Functor g => (f a -> a) -> (forall c. g c -> f c) -> (b -> g b) -> b -> a Source #

Erwig's metamorphism. Essentially a hylomorphism with a natural transformation in between. This allows us to use more than one functor in a hylomorphism.

scolio :: Recursive t => (Base t (a, t) -> a) -> (Base t (a, t) -> t) -> t -> a Source #

Catamorphism collaψng along two data types simultaneously.

cata :: Recursive t => (Base t a -> a) -> t -> a Source #

Catamorphism. Folds a structure. (see here)

ana :: Corecursive t => (a -> Base t a) -> a -> t Source #

Anamorphism, meant to build up a structure recursively.

Mendler-style recursion schemes

mhisto :: (forall y. (y -> c) -> (y -> f y) -> f y -> c) -> Fix f -> c Source #

Mendler's histomorφsm

mcata :: (forall y. (y -> c) -> f y -> c) -> Fix f -> c Source #

Mendler's catamorphism

Monadic recursion schemes

cataM :: (Recursive t, Traversable (Base t), Monad m) => (Base t a -> m a) -> t -> m a Source #

anaM :: (Corecursive t, Traversable (Base t), Monad m) => (a -> m (Base t a)) -> a -> m t Source #

hyloM :: (Traversable f, Monad m) => (f b -> m b) -> (a -> m (f a)) -> a -> m b Source #

zygoM :: (Recursive t, Traversable (Base t), Monad m) => (Base t b -> m b) -> (Base t (b, a) -> m a) -> t -> m a Source #

zygoM' :: (Recursive t, Traversable (Base t), Monad m) => (Base t b -> m b) -> (Base t (b, a) -> m a) -> t -> m a Source #

scolioM :: (Recursive t, Traversable (Base t), Monad m) => (Base t (t, a) -> m t) -> (Base t (t, a) -> m a) -> t -> m a Source #

scolioM' :: (Recursive t, Traversable (Base t), Monad m) => (Base t (t, a) -> m t) -> (Base t (t, a) -> m a) -> t -> m a Source #

coelgotM :: (Traversable f, Monad m) => ((a, f b) -> m b) -> (a -> m (f a)) -> a -> m b Source #

elgotM :: (Traversable f, Monad m) => (f a -> m a) -> (b -> m (Either a (f b))) -> b -> m a Source #

paraM :: (Recursive t, Corecursive t, Traversable (Base t), Monad m) => (Base t (t, a) -> m a) -> t -> m a Source #

mutuM :: (Recursive t, Traversable (Base t), Monad m) => (Base t (a, a) -> m a) -> (Base t (a, a) -> m a) -> t -> m a Source #

mutuM' :: (Recursive t, Traversable (Base t), Monad m) => (Base t (a, a) -> m a) -> (Base t (a, a) -> m a) -> t -> m a Source #

microM :: (Corecursive a, Traversable (Base a), Monad m) => (b -> m (Either a (Base a b))) -> b -> m a Source #

Helper functions

lambek :: (Recursive t, Corecursive t) => t -> Base t t Source #

colambek :: (Recursive t, Corecursive t) => Base t t -> t Source #

hoist :: (Recursive s, Corecursive t) => (forall a. Base s a -> Base t a) -> s -> t Source #

refix :: (Recursive s, Corecursive t, Base s ~ Base t) => s -> t Source #