{-| Module: Data.Text.Zipper Description: A zipper for text documents that allows convenient editing and navigation 'TextZipper' is designed to be help manipulate the contents of a text input field. It keeps track of the logical lines of text (i.e., lines separated by user-entered newlines) and the current cursor position. Several functions are defined in this module to navigate and edit the TextZipper from the cursor position. 'TextZipper's can be converted into 'DisplayLines', which describe how the contents of the zipper will be displayed when wrapped to fit within a container of a certain width. It also provides some convenience facilities for converting interactions with the rendered DisplayLines back into manipulations of the underlying TextZipper. -} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE OverloadedStrings #-} module Data.Text.Zipper where import Data.Char (isSpace) import Data.Map (Map) import qualified Data.Map as Map import Data.Maybe (fromMaybe) import Data.String import Control.Monad.State (evalState, forM, get, put) import Data.Text (Text) import qualified Data.Text as T import Data.Text.ICU.Char import Data.Text.Internal (Text(..), text) import Data.Text.Internal.Fusion (stream) import Data.Text.Internal.Fusion.Types (Stream(..), Step(..)) import Data.Text.Unsafe -- | A zipper of the logical text input contents (the "document"). The lines -- before the line containing the cursor are stored in reverse order. -- The cursor is logically between the "before" and "after" text. -- A "logical" line of input is a line of input up until a user-entered newline -- character (as compared to a "display" line, which is wrapped to fit within -- a given viewport width). data TextZipper = TextZipper { _textZipper_linesBefore :: [Text] -- reversed , _textZipper_before :: Text , _textZipper_after :: Text -- The cursor is on top of the first character of this text , _textZipper_linesAfter :: [Text] } deriving (Show) instance IsString TextZipper where fromString = fromText . T.pack -- | Map a replacement function over the characters in a 'TextZipper' mapZipper :: (Char -> Char) -> TextZipper -> TextZipper mapZipper f (TextZipper lb b a la) = TextZipper { _textZipper_linesBefore = fmap (T.map f) lb , _textZipper_before = T.map f b , _textZipper_after = T.map f a , _textZipper_linesAfter = fmap (T.map f) la } -- | Move the cursor left one character, if possible left :: TextZipper -> TextZipper left = leftN 1 -- | Move the cursor left by the given number of characters, or, if the document -- isn't long enough, to the beginning of the document leftN :: Int -> TextZipper -> TextZipper leftN n z@(TextZipper lb b a la) = if T.length b >= n then let n' = T.length b - n in TextZipper lb (T.take n' b) (T.drop n' b <> a) la else case lb of [] -> home z (l:ls) -> leftN (n - T.length b - 1) $ TextZipper ls l "" ((b <> a) : la) -- | Move the cursor right one character, if possible right :: TextZipper -> TextZipper right = rightN 1 -- | Move the character right by the given number of characters, or, if the document -- isn't long enough, to the end of the document rightN :: Int -> TextZipper -> TextZipper rightN n z@(TextZipper lb b a la) = if T.length a >= n then TextZipper lb (b <> T.take n a) (T.drop n a) la else case la of [] -> end z (l:ls) -> rightN (n - T.length a - 1) $ TextZipper ((b <> a) : lb) "" l ls -- | Move the cursor up one logical line, if possible up :: TextZipper -> TextZipper up z@(TextZipper lb b a la) = case lb of [] -> z (l:ls) -> let (b', a') = T.splitAt (T.length b) l in TextZipper ls b' a' ((b <> a) : la) -- | Move the cursor down one logical line, if possible down :: TextZipper -> TextZipper down z@(TextZipper lb b a la) = case la of [] -> z (l:ls) -> let (b', a') = T.splitAt (T.length b) l in TextZipper ((b <> a) : lb) b' a' ls -- | Move the cursor up by the given number of lines pageUp :: Int -> TextZipper -> TextZipper pageUp pageSize z = if pageSize <= 0 then z else pageUp (pageSize - 1) $ up z -- | Move the cursor down by the given number of lines pageDown :: Int -> TextZipper -> TextZipper pageDown pageSize z = if pageSize <= 0 then z else pageDown (pageSize - 1) $ down z -- | Move the cursor to the beginning of the current logical line home :: TextZipper -> TextZipper home (TextZipper lb b a la) = TextZipper lb "" (b <> a) la -- | Move the cursor to the end of the current logical line end :: TextZipper -> TextZipper end (TextZipper lb b a la) = TextZipper lb (b <> a) "" la -- | Move the cursor to the top of the document top :: TextZipper -> TextZipper top (TextZipper lb b a la) = case reverse lb of [] -> TextZipper [] "" (b <> a) la (start:rest) -> TextZipper [] "" start (rest <> [b <> a] <> la) -- | Insert a character at the current cursor position insertChar :: Char -> TextZipper -> TextZipper insertChar i = insert (T.singleton i) -- | Insert text at the current cursor position insert :: Text -> TextZipper -> TextZipper insert i z@(TextZipper lb b a la) = case T.split (=='\n') i of [] -> z (start:rest) -> case reverse rest of [] -> TextZipper lb (b <> start) a la (l:ls) -> TextZipper (ls <> [b <> start] <> lb) l a la -- | Delete the character to the left of the cursor deleteLeft :: TextZipper-> TextZipper deleteLeft z@(TextZipper lb b a la) = case T.unsnoc b of Nothing -> case lb of [] -> z (l:ls) -> TextZipper ls l a la Just (b', _) -> TextZipper lb b' a la -- | Delete the character under/to the right of the cursor deleteRight :: TextZipper -> TextZipper deleteRight z@(TextZipper lb b a la) = case T.uncons a of Nothing -> case la of [] -> z (l:ls) -> TextZipper lb b l ls Just (_, a') -> TextZipper lb b a' la -- | Delete a word to the left of the cursor. Deletes all whitespace until it -- finds a non-whitespace character, and then deletes contiguous non-whitespace -- characters. deleteLeftWord :: TextZipper -> TextZipper deleteLeftWord (TextZipper lb b a la) = let b' = T.dropWhileEnd isSpace b in if T.null b' then case lb of [] -> TextZipper [] b' a la (l:ls) -> deleteLeftWord $ TextZipper ls l a la else TextZipper lb (T.dropWhileEnd (not . isSpace) b') a la -- | Insert up to n spaces to get to the next logical column that is a multiple of n tab :: Int -> TextZipper -> TextZipper tab n z@(TextZipper _ b _ _) = insert (T.replicate (fromEnum $ n - (T.length b `mod` max 1 n)) " ") z -- | The plain text contents of the zipper value :: TextZipper -> Text value (TextZipper lb b a la) = T.intercalate "\n" $ mconcat [ reverse lb , [b <> a] , la ] -- | The empty zipper empty :: TextZipper empty = TextZipper [] "" "" [] -- | Constructs a zipper with the given contents. The cursor is placed after -- the contents. fromText :: Text -> TextZipper fromText = flip insert empty -- | A span of text tagged with some metadata that makes up part of a display -- line. data Span tag = Span tag Text deriving (Show) -- | Information about the document as it is displayed (i.e., post-wrapping) data DisplayLines tag = DisplayLines { _displayLines_spans :: [[Span tag]] , _displayLines_offsetMap :: Map Int Int , _displayLines_cursorY :: Int } deriving (Show) -- | Given a width and a 'TextZipper', produce a list of display lines -- (i.e., lines of wrapped text) with special attributes applied to -- certain segments (e.g., the cursor). Additionally, produce the current -- y-coordinate of the cursor and a mapping from display line number to text -- offset displayLines :: Int -- ^ Width, used for wrapping -> tag -- ^ Metadata for normal characters -> tag -- ^ Metadata for the cursor -> TextZipper -- ^ The text input contents and cursor state -> DisplayLines tag displayLines width tag cursorTag (TextZipper lb b a la) = let linesBefore :: [[Text]] -- The wrapped lines before the cursor line linesBefore = map (wrapWithOffset width 0) $ reverse lb linesAfter :: [[Text]] -- The wrapped lines after the cursor line linesAfter = map (wrapWithOffset width 0) la offsets :: Map Int Int offsets = offsetMap $ mconcat [ linesBefore , [wrapWithOffset width 0 $ b <> a] , linesAfter ] spansBefore = map ((:[]) . Span tag) $ concat linesBefore spansAfter = map ((:[]) . Span tag) $ concat linesAfter -- Separate the spans before the cursor into -- * spans that are on earlier display lines (though on the same logical line), and -- * spans that are on the same display line (spansCurrentBefore, spansCurLineBefore) = fromMaybe ([], []) $ initLast $ map ((:[]) . Span tag) (wrapWithOffset width 0 b) -- Calculate the number of columns on the cursor's display line before the cursor curLineOffset = spansWidth spansCurLineBefore -- Check whether the spans on the current display line are long enough that -- the cursor has to go to the next line cursorAfterEOL = curLineOffset == width cursorCharWidth = case T.uncons a of Nothing -> 1 Just (c, _) -> charWidth c -- Separate the span after the cursor into -- * spans that are on the same display line, and -- * spans that are on later display lines (though on the same logical line) (spansCurLineAfter, spansCurrentAfter) = fromMaybe ([], []) $ headTail $ case T.uncons a of Nothing -> [[Span cursorTag " "]] Just (c, rest) -> let o = if cursorAfterEOL then cursorCharWidth else curLineOffset + cursorCharWidth cursor = Span cursorTag (T.singleton c) in case map ((:[]) . Span tag) (wrapWithOffset width o rest) of [] -> [[cursor]] (l:ls) -> (cursor : l) : ls in DisplayLines { _displayLines_spans = concat [ spansBefore , spansCurrentBefore , if cursorAfterEOL then [ spansCurLineBefore, spansCurLineAfter ] else [ spansCurLineBefore <> spansCurLineAfter ] , spansCurrentAfter , spansAfter ] , _displayLines_offsetMap = offsets , _displayLines_cursorY = sum [ length spansBefore , length spansCurrentBefore , if cursorAfterEOL then cursorCharWidth else 0 ] } where initLast :: [a] -> Maybe ([a], a) initLast = \case [] -> Nothing (x:xs) -> case initLast xs of Nothing -> Just ([], x) Just (ys, y) -> Just (x:ys, y) headTail :: [a] -> Maybe (a, [a]) headTail = \case [] -> Nothing x:xs -> Just (x, xs) -- | Wraps a logical line of text to fit within the given width. The first -- wrapped line is offset by the number of columns provided. Subsequent wrapped -- lines are not. wrapWithOffset :: Int -- ^ Maximum width -> Int -- ^ Offset for first line -> Text -- ^ Text to be wrapped -> [Text] wrapWithOffset maxWidth _ _ | maxWidth <= 0 = [] wrapWithOffset maxWidth n xs = let (firstLine, rest) = splitAtWidth (maxWidth - n) xs in firstLine : (fmap (takeWidth maxWidth) . takeWhile (not . T.null) . iterate (dropWidth maxWidth) $ rest) -- | Split a 'Text' at the given column index. For example -- -- > splitAtWidth 3 "ᄀabc" == ("ᄀa", "bc") -- -- because the first character has a width of two (see 'charWidth' for more on that). splitAtWidth :: Int -> Text -> (Text, Text) splitAtWidth n t@(Text arr off len) | n <= 0 = (T.empty, t) | n >= textWidth t = (t, T.empty) | otherwise = let k = iterNWidth n t in (text arr off k, text arr (off+k) (len-k)) where iterNWidth :: Int -> Text -> Int iterNWidth n' t'@(Text _ _ len') = loop 0 0 where loop !i !cnt | i >= len' || cnt + w > n' = i | otherwise = loop (i+d) (cnt + w) where Iter c d = iter t' i w = charWidth c -- | Takes the given number of columns of characters. For example -- -- > takeWidth 3 "ᄀabc" == "ᄀa" -- -- because the first character has a width of 2 (see 'charWidth' for more on that). -- This function will not take a character if its width exceeds the width it seeks to take. takeWidth :: Int -> Text -> Text takeWidth n = fst . splitAtWidth n -- | Drops the given number of columns of characters. For example -- -- > dropWidth 2 "ᄀabc" == "abc" -- -- because the first character has a width of 2 (see 'charWidth' for more on that). -- This function will not drop a character if its width exceeds the width it seeks to drop. dropWidth :: Int -> Text -> Text dropWidth n = snd . splitAtWidth n -- | Get the display width of a 'Char'. "Full width" and "wide" characters -- take two columns and everything else takes a single column. See -- for more information. charWidth :: Char -> Int charWidth c = case property EastAsianWidth c of EAFull -> 2 EAWide -> 2 _ -> 1 -- | For a given set of wrapped logical lines, computes a map -- from display line index to text offset in the original text. -- This is used to help determine how interactions with the displayed -- text map back to the original text. -- For example, given the document @\"AA\\nBBB\\nCCCCCCCC\\n\"@ wrapped to 5 columns, -- this function will compute the offset in the original document of each character -- in column 1: -- -- > AA... (0, 0) -- > BBB.. (1, 3) -- > CCCCC (2, 7) -- (this line wraps to the next row) -- > CCC.. (3, 12) -- > ..... (4, 16) offsetMap :: [[Text]] -- ^ The outer list represents logical lines, and the -- inner list represents the display lines into which -- the logical line has been wrapped -> Map Int Int -- ^ A map from the index (row) of display line to -- the text offset from the beginning of the document -- to the first character of the display line offsetMap ts = evalState (offsetMap' ts) (0, 0) where offsetMap' xs = fmap Map.unions $ forM xs $ \x -> do maps <- forM x $ \line -> do let l = T.length line (dl, o) <- get put (dl + 1, o + l) return $ Map.singleton dl o (dl, o) <- get put (dl, o + 1) return $ Map.insert dl (o + 1) $ Map.unions maps -- | Move the cursor of the given 'TextZipper' to the logical position indicated -- by the given display line coordinates, using the provided 'DisplayLines' -- information. If the x coordinate is beyond the end of a line, the cursor is -- moved to the end of the line. goToDisplayLinePosition :: Int -> Int -> DisplayLines tag -> TextZipper -> TextZipper goToDisplayLinePosition x y dl tz = let offset = Map.lookup y $ _displayLines_offsetMap dl in case offset of Nothing -> tz Just o -> let displayLineLength = case drop y $ _displayLines_spans dl of [] -> x (s:_) -> spansWidth s in rightN (o + min displayLineLength x) $ top tz -- | Get the width of the text in a set of 'Span's, taking into account unicode character widths spansWidth :: [Span tag] -> Int spansWidth = sum . map (\(Span _ t) -> textWidth t) -- | Get the length (number of characters) of the text in a set of 'Span's spansLength :: [Span tag] -> Int spansLength = sum . map (\(Span _ t) -> T.length t) -- | Compute the width of some 'Text', taking into account fullwidth -- unicode forms. textWidth :: Text -> Int textWidth t = widthI (stream t) -- | Compute the width of a stream of characters, taking into account -- fullwidth unicode forms. widthI :: Stream Char -> Int widthI (Stream next s0 _len) = loop_length 0 s0 where loop_length !z s = case next s of Done -> z Skip s' -> loop_length z s' Yield c s' -> loop_length (z + charWidth c) s' {-# INLINE[0] widthI #-}