{-# LANGUAGE TypeFamilies, GADTs #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Text.Regex.Applicative.Interface where
import Control.Applicative hiding (empty)
import qualified Control.Applicative
import Control.Arrow
import Data.Traversable
import Data.String
import Data.Maybe
import Text.Regex.Applicative.Types
import Text.Regex.Applicative.Object

instance Functor (RE s) where
    fmap f x = Fmap f x
    f <$ x = pure f <* x

instance Applicative (RE s) where
    pure x = const x <$> Eps
    a1 <*> a2 = App a1 a2
    a *> b = pure (const id) <*> Void a <*> b
    a <* b = pure const <*> a <*> Void b

instance Alternative (RE s) where
    a1 <|> a2 = Alt a1 a2
    empty = Fail
    many a = reverse <$> Rep Greedy (flip (:)) [] a
    some a = (:) <$> a <*> many a

instance (char ~ Char, string ~ String) => IsString (RE char string) where
    fromString = string

-- | 'RE' is a profunctor. This is its contravariant map.
--
-- (A dependency on the @profunctors@ package doesn't seem justified.)
comap :: (s2 -> s1) -> RE s1 a -> RE s2 a
comap f re =
  case re of
    Eps -> Eps
    Symbol t p    -> Fmap f $ Symbol t (p . f)
    Alt r1 r2     -> Alt (comap f r1) (comap f r2)
    App r1 r2     -> App (comap f r1) (comap f r2)
    Fmap g r      -> Fmap g (comap f r)
    Fail          -> Fail
    Rep gr fn a r -> Rep gr fn a (comap f r)
    Void r        -> Void (comap f r)

-- | Match and return a single symbol which satisfies the predicate
psym :: (s -> Bool) -> RE s s
psym p = Symbol (error "Not numbered symbol") p

-- | Match and return the given symbol
sym :: Eq s => s -> RE s s
sym s = psym (s ==)

-- | Match and return any single symbol
anySym :: RE s s
anySym = psym (const True)

-- | Match and return the given sequence of symbols.
--
-- Note that there is an 'IsString' instance for regular expression, so
-- if you enable the @OverloadedStrings@ language extension, you can write
-- @string \"foo\"@ simply as @\"foo\"@.
--
-- Example:
--
-- >{-# LANGUAGE OverloadedStrings #-}
-- >import Text.Regex.Applicative
-- >
-- >number = "one" *> pure 1  <|>  "two" *> pure 2
-- >
-- >main = print $ "two" =~ number
string :: Eq a => [a] -> RE a [a]
string = traverse sym

-- | Match zero or more instances of the given expression, which are combined using
-- the given folding function.
--
-- 'Greediness' argument controls whether this regular expression should match
-- as many as possible ('Greedy') or as few as possible ('NonGreedy') instances
-- of the underlying expression.
reFoldl :: Greediness -> (b -> a -> b) -> b -> RE s a -> RE s b
reFoldl g f b a = Rep g f b a

-- | Match zero or more instances of the given expression, but as
-- few of them as possible (i.e. /non-greedily/). A greedy equivalent of 'few'
-- is 'many'.
--
-- Examples:
--
-- >Text.Regex.Applicative> findFirstPrefix (few anySym  <* "b") "ababab"
-- >Just ("a","abab")
-- >Text.Regex.Applicative> findFirstPrefix (many anySym  <* "b") "ababab"
-- >Just ("ababa","")
few :: RE s a -> RE s [a]
few a = reverse <$> Rep NonGreedy (flip (:)) [] a

-- | Return matched symbols as part of the return value
withMatched :: RE s a -> RE s (a, [s])
withMatched Eps = flip (,) [] <$> Eps
withMatched x@(Symbol _ _) = (id &&& pure) <$> x
withMatched (Alt a b) = withMatched a <|> withMatched b
withMatched (App a b) =
    (\(f, s) (x, t) -> (f x, s ++ t)) <$>
        withMatched a <*>
        withMatched b
withMatched Fail = Fail
withMatched (Fmap f x) = (f *** id) <$> withMatched x
withMatched (Rep gr f a0 x) =
    Rep gr (\(a, s) (x, t) -> (f a x, s ++ t)) (a0, []) (withMatched x)
-- N.B.: this ruins the Void optimization
withMatched (Void x) = (const () *** id) <$> withMatched x

-- | @s =~ a = match a s@
(=~) :: [s] -> RE s a -> Maybe a
(=~) = flip match
infix 2 =~

-- | Attempt to match a string of symbols against the regular expression.
-- Note that the whole string (not just some part of it) should be matched.
--
-- Examples:
--
-- >Text.Regex.Applicative> match (sym 'a' <|> sym 'b') "a"
-- >Just 'a'
-- >Text.Regex.Applicative> match (sym 'a' <|> sym 'b') "ab"
-- >Nothing
--
match :: RE s a -> [s] -> Maybe a
match re = let obj = compile re in \str ->
    listToMaybe $
    results $
    foldl (flip step) obj str

-- | Find a string prefix which is matched by the regular expression.
--
-- Of all matching prefixes, pick one using left bias (prefer the left part of
-- '<|>' to the right part) and greediness.
--
-- This is the match which a backtracking engine (such as Perl's one) would find
-- first.
--
-- If match is found, the rest of the input is also returned.
--
-- Examples:
--
-- >Text.Regex.Applicative> findFirstPrefix ("a" <|> "ab") "abc"
-- >Just ("a","bc")
-- >Text.Regex.Applicative> findFirstPrefix ("ab" <|> "a") "abc"
-- >Just ("ab","c")
-- >Text.Regex.Applicative> findFirstPrefix "bc" "abc"
-- >Nothing
findFirstPrefix :: RE s a -> [s] -> Maybe (a, [s])
findFirstPrefix re str = go (compile re) str Nothing
    where
    walk obj [] = (obj, Nothing)
    walk obj (t:ts) =
        case getResult t of
            Just r -> (obj, Just r)
            Nothing -> walk (addThread t obj) ts

    go obj str resOld =
        case walk emptyObject $ threads obj of
            (obj', resThis) ->
                let res = ((flip (,) str) <$> resThis) <|> resOld
                in
                    case str of
                        _ | failed obj' -> res
                        [] -> res
                        (s:ss) -> go (step s obj') ss res

-- | Find the longest string prefix which is matched by the regular expression.
--
-- Submatches are still determined using left bias and greediness, so this is
-- different from POSIX semantics.
--
-- If match is found, the rest of the input is also returned.
--
-- Examples:
--
-- >Text.Regex.Applicative Data.Char> let keyword = "if"
-- >Text.Regex.Applicative Data.Char> let identifier = many $ psym isAlpha
-- >Text.Regex.Applicative Data.Char> let lexeme = (Left <$> keyword) <|> (Right <$> identifier)
-- >Text.Regex.Applicative Data.Char> findLongestPrefix lexeme "if foo"
-- >Just (Left "if"," foo")
-- >Text.Regex.Applicative Data.Char> findLongestPrefix lexeme "iffoo"
-- >Just (Right "iffoo","")
findLongestPrefix :: RE s a -> [s] -> Maybe (a, [s])
findLongestPrefix re str = go (compile re) str Nothing
    where
    go obj str resOld =
        let res = (fmap (flip (,) str) $ listToMaybe $ results obj) <|> resOld
        in
            case str of
                _ | failed obj -> res
                [] -> res
                (s:ss) -> go (step s obj) ss res

-- | Find the shortest prefix (analogous to 'findLongestPrefix')
findShortestPrefix :: RE s a -> [s] -> Maybe (a, [s])
findShortestPrefix re str = go (compile re) str
    where
    go obj str =
        case results obj of
            r : _ -> Just (r, str)
            _ | failed obj -> Nothing
            _ ->
                case str of
                    [] -> Nothing
                    s:ss -> go (step s obj) ss

-- | Find the leftmost substring that is matched by the regular expression.
-- Otherwise behaves like 'findFirstPrefix'. Returns the result together with
-- the prefix and suffix of the string surrounding the match.
findFirstInfix :: RE s a -> [s] -> Maybe ([s], a, [s])
findFirstInfix re str =
    fmap (\((first, res), last) -> (first, res, last)) $
    findFirstPrefix ((,) <$> few anySym <*> re) str

-- Auxiliary function for findExtremeInfix
prefixCounter :: RE s (Int, [s])
prefixCounter = second reverse <$> reFoldl NonGreedy f (0, []) anySym
    where
    f (i, prefix) s = ((,) $! (i+1)) $ s:prefix

data InfixMatchingState s a = GotResult
    { prefixLen  :: !Int
    , prefixStr  :: [s]
    , result     :: a
    , postfixStr :: [s]
    }
    | NoResult

-- a `preferOver` b chooses one of a and b, giving preference to a
preferOver
    :: InfixMatchingState s a
    -> InfixMatchingState s a
    -> InfixMatchingState s a
preferOver NoResult b = b
preferOver b NoResult = b
preferOver a b =
    case prefixLen a `compare` prefixLen b of
        GT -> b -- prefer b when it has smaller prefix
        _  -> a -- otherwise, prefer a

mkInfixMatchingState
    :: [s] -- rest of input
    -> Thread s ((Int, [s]), a)
    -> InfixMatchingState s a
mkInfixMatchingState rest thread =
    case getResult thread of
        Just ((pLen, pStr), res) ->
            GotResult
                { prefixLen = pLen
                , prefixStr = pStr
                , result    = res
                , postfixStr = rest
                }
        Nothing -> NoResult

gotResult :: InfixMatchingState s a -> Bool
gotResult GotResult {} = True
gotResult _ = False

-- Algorithm for finding leftmost longest infix match:
--
-- 1. Add a thread /.*?/ to the begginning of the regexp
-- 2. As soon as we get first accept, we delete that thread
-- 3. When we get more than one accept, we choose one by the following criteria:
-- 3.1. Compare by the length of prefix (since we are looking for the leftmost
-- match)
-- 3.2. If they are produced on the same step, choose the first one (left-biased
-- choice)
-- 3.3. If they are produced on the different steps, choose the later one (since
-- they have the same prefixes, later means longer)
findExtremalInfix
    :: -- function to combine a later result (first arg) to an earlier one (second
       -- arg)
       (InfixMatchingState s a -> InfixMatchingState s a -> InfixMatchingState s a)
    -> RE s a
    -> [s]
    -> Maybe ([s], a, [s])
findExtremalInfix newOrOld re str =
    case go (compile $ (,) <$> prefixCounter <*> re) str NoResult of
        NoResult -> Nothing
        r@GotResult{} ->
            Just (prefixStr r, result r, postfixStr r)
    where
    {-
    go :: ReObject s ((Int, [s]), a)
       -> [s]
       -> InfixMatchingState s a
       -> InfixMatchingState s a
    -}
    go obj str resOld =
        let resThis =
                foldl
                    (\acc t -> acc `preferOver` mkInfixMatchingState str t)
                    NoResult $
                    threads obj
            res = resThis `newOrOld` resOld
            obj' =
                -- If we just found the first result, kill the "prefixCounter" thread.
                -- We rely on the fact that it is the last thread of the object.
                if gotResult resThis && not (gotResult resOld)
                    then fromThreads $ init $ threads obj
                    else obj
        in
            case str of
                [] -> res
                _ | failed obj -> res
                (s:ss) -> go (step s obj') ss res


-- | Find the leftmost substring that is matched by the regular expression.
-- Otherwise behaves like 'findLongestPrefix'. Returns the result together with
-- the prefix and suffix of the string surrounding the match.
findLongestInfix :: RE s a -> [s] -> Maybe ([s], a, [s])
findLongestInfix = findExtremalInfix preferOver

-- | Find the leftmost substring that is matched by the regular expression.
-- Otherwise behaves like 'findShortestPrefix'. Returns the result together with
-- the prefix and suffix of the string surrounding the match.
findShortestInfix :: RE s a -> [s] -> Maybe ([s], a, [s])
findShortestInfix = findExtremalInfix $ flip preferOver