repa-algorithms-3.1.0.1: Algorithms using the Repa array library.

Safe HaskellNone

Data.Array.Repa.Algorithms.FFT

Description

Fast computation of Discrete Fourier Transforms using the Cooley-Tuckey algorithm. Time complexity is O(n log n) in the size of the input.

This uses a naive divide-and-conquer algorithm, the absolute performance is about 50x slower than FFTW in estimate mode.

Synopsis

Documentation

data Mode Source

Constructors

Forward 
Reverse 
Inverse 

Instances

isPowerOfTwo :: Int -> BoolSource

Check if an Int is a power of two.

fft3dP :: (Repr r Complex, Monad m) => Mode -> Array r DIM3 Complex -> m (Array U DIM3 Complex)Source

Compute the DFT of a 3d array. Array dimensions must be powers of two else error.

fft2dP :: (Repr r Complex, Monad m) => Mode -> Array r DIM2 Complex -> m (Array U DIM2 Complex)Source

Compute the DFT of a matrix. Array dimensions must be powers of two else error.

fft1dP :: (Repr r Complex, Monad m) => Mode -> Array r DIM1 Complex -> m (Array U DIM1 Complex)Source

Compute the DFT of a vector. Array dimensions must be powers of two else error.