----------------------------------------------------------------------------- -- | -- Module : Data.Row.Records -- -- This module implements extensible records using closed type famillies. -- -- See Examples.lhs for examples. -- -- Lists of (label,type) pairs are kept sorted thereby ensuring -- that { x = 0, y = 0 } and { y = 0, x = 0 } have the same type. -- -- In this way we can implement standard type classes such as Show, Eq, Ord and Bounded -- for open records, given that all the elements of the open record satify the constraint. -- ----------------------------------------------------------------------------- module Data.Row.Records ( -- * Types and constraints Label(..) , KnownSymbol, AllUniqueLabels, WellBehaved , Rec, Row, Empty, type (≈) -- * Construction , empty , type (.==), (.==), pattern (:==), unSingleton , default', defaultA , fromLabels, fromLabelsA, fromLabelsMapA -- ** Extension , extend, Extend, Lacks, type (.\) -- ** Restriction , type (.-), (.-) , restrict, split -- ** Modification , update, focus, multifocus, Modify, rename, Rename -- * Query , HasType, type (.!), (.!) -- * Combine -- ** Disjoint union , type (.+), (.+), Disjoint, pattern (:+) -- ** Overwrite , type (.//), (.//) -- * Native Conversion -- $native , fromNative, toNative, toNativeGeneral , FromNative, ToNative, ToNativeGeneral , NativeRow -- * Dynamic Conversion , toDynamicMap, fromDynamicMap -- * Row operations -- ** Map , Map, map, map', mapF , transform, transform' -- ** Fold , BiForall, Forall, erase, eraseWithLabels, eraseZip, eraseToHashMap -- ** Zip , Zip, zip -- ** Sequence , sequence, sequence' -- ** Compose -- $compose , compose, uncompose , compose', uncompose' -- ** Labels , labels, labels' -- ** Coerce , coerceRec -- ** UNSAFE operations , unsafeRemove, unsafeInjectFront ) where import Prelude hiding (map, sequence, zip) import Control.DeepSeq (NFData(..), deepseq) import Data.Coerce import Data.Constraint ((\\)) import Data.Dynamic import Data.Functor.Compose import Data.Functor.Const import Data.Functor.Identity import Data.Functor.Product import Data.Generics.Product.Fields (HasField(..), HasField'(..)) import Data.Hashable import Data.HashMap.Lazy (HashMap) import qualified Data.HashMap.Lazy as M import qualified Data.List as L import Data.Monoid (Endo(..), appEndo) import Data.Proxy import Data.String (IsString) import Data.Text (Text) import qualified GHC.Generics as G import GHC.TypeLits import Unsafe.Coerce import Data.Row.Internal {-------------------------------------------------------------------- Open records --------------------------------------------------------------------} -- | A record with row r. newtype Rec (r :: Row *) where OR :: HashMap Text HideType -> Rec r instance Forall r Show => Show (Rec r) where showsPrec p r = case eraseWithLabels @Show (showsPrec 7) r of [] -> showString "empty" xs -> showParen (p > 6) (appEndo $ foldMap Endo (L.intersperse (showString " .+ ") (L.map binds xs))) where binds (label, value) = showChar '#' . showString label . showString " .== " . value instance Forall r Eq => Eq (Rec r) where r == r' = and $ eraseZip @Eq (==) r r' instance (Forall r Eq, Forall r Ord) => Ord (Rec r) where compare m m' = cmp $ eraseZip @Ord compare m m' where cmp l | [] <- l' = EQ | a : _ <- l' = a where l' = dropWhile (== EQ) l instance (Forall r Bounded, AllUniqueLabels r) => Bounded (Rec r) where minBound = default' @Bounded minBound maxBound = default' @Bounded maxBound instance Forall r NFData => NFData (Rec r) where rnf r = getConst $ metamorph @_ @r @NFData @Rec @(Const ()) @Identity Proxy empty doUncons doCons r where empty = const $ Const () doUncons l r = (Identity $ r .! l, unsafeRemove l r) doCons _ x r = deepseq x $ deepseq r $ Const () -- | The empty record empty :: Rec Empty empty = OR M.empty -- | The singleton record infix 7 .== (.==) :: KnownSymbol l => Label l -> a -> Rec (l .== a) l .== a = extend l a empty -- | A pattern for the singleton record; can be used to both destruct a record -- when in a pattern position or construct one in an expression position. {-# COMPLETE (:==) #-} infix 7 :== pattern (:==) :: forall l a. KnownSymbol l => Label l -> a -> Rec (l .== a) pattern l :== a <- (unSingleton @l @a -> (l, a)) where (:==) l a = l .== a -- | Turns a singleton record into a pair of the label and value. unSingleton :: forall l a. KnownSymbol l => Rec (l .== a) -> (Label l, a) unSingleton r = (l, r .! l) where l = Label @l {-------------------------------------------------------------------- Basic record operations --------------------------------------------------------------------} -- | Record extension. The row may already contain the label, -- in which case the origin value can be obtained after restriction ('.-') with -- the label. extend :: forall a l r. KnownSymbol l => Label l -> a -> Rec r -> Rec (Extend l a r) extend (toKey -> l) a (OR m) = OR $ M.insert l (HideType a) m -- | Update the value associated with the label. update :: (KnownSymbol l, r .! l ≈ a) => Label l -> a -> Rec r -> Rec r update (toKey -> l) a (OR m) = OR $ M.adjust f l m where f = const (HideType a) -- | Focus on the value associated with the label. focus :: ( KnownSymbol l , r' .! l ≈ b , r .! l ≈ a , r' ~ Modify l b r , r ~ Modify l a r' , Functor f) => Label l -> (a -> f b) -> Rec r -> f (Rec r') focus (toKey -> l) f (OR m) = case m M.! l of HideType x -> OR . flip (M.insert l) m . HideType <$> f (unsafeCoerce x) -- | Focus on a sub-record multifocus :: forall u v r f. ( Functor f , Disjoint u r , Disjoint v r) => (Rec u -> f (Rec v)) -> Rec (u .+ r) -> f (Rec (v .+ r)) multifocus f (u :+ r) = (.+ r) <$> f u -- | Rename a label. rename :: (KnownSymbol l, KnownSymbol l') => Label l -> Label l' -> Rec r -> Rec (Rename l l' r) rename (toKey -> l) (toKey -> l') (OR m) = OR $ M.insert l' (m M.! l) $ M.delete l m -- | Record selection (.!) :: KnownSymbol l => Rec r -> Label l -> r .! l OR m .! (toKey -> a) = case m M.! a of HideType x -> unsafeCoerce x infixl 6 .- -- | Record restriction. Remove the label l from the record. (.-) :: KnownSymbol l => Rec r -> Label l -> Rec (r .- l) -- OR m .- _ = OR m OR m .- (toKey -> a) = OR $ M.delete a m -- | Record disjoint union (commutative) infixl 6 .+ (.+) :: Rec l -> Rec r -> Rec (l .+ r) OR l .+ OR r = OR $ M.unionWith (error "Impossible") l r -- | Record overwrite. -- -- The operation @r .// r'@ creates a new record such that: -- -- - Any label that is in both @r@ and @r'@ is in the resulting record with the -- type and value given by the fields in @r@, -- -- - Any label that is only found in @r@ is in the resulting record. -- -- - Any label that is only found in @r'@ is in the resulting record. -- -- This can be thought of as @r@ "overwriting" @r'@. (.//) :: Rec r -> Rec r' -> Rec (r .// r') OR l .// OR r = OR $ M.union l r -- | A pattern version of record union, for use in pattern matching. {-# COMPLETE (:+) #-} infixl 6 :+ pattern (:+) :: forall l r. Disjoint l r => Rec l -> Rec r -> Rec (l .+ r) pattern l :+ r <- (split @l -> (l, r)) where (:+) l r = l .+ r -- | Split a record into two sub-records. split :: forall s r. (Forall s Unconstrained1, Subset s r) => Rec r -> (Rec s, Rec (r .\\ s)) split (OR m) = (OR $ M.intersection m labelMap, OR $ M.difference m labelMap) where labelMap = M.fromList $ L.zip (labels @s @Unconstrained1) (repeat ()) -- | Arbitrary record restriction. Turn a record into a subset of itself. restrict :: forall r r'. (Forall r Unconstrained1, Subset r r') => Rec r' -> Rec r restrict = fst . split -- | Removes a label from the record but does not remove the underlying value. -- -- This is faster than regular record removal ('.-') but should only be used when -- either: the record will never be merged with another record again, or a new -- value will soon be placed into the record at this label (as in, an 'update' -- that is split over two commands). -- -- If the resulting record is then merged (with '.+') with another record that -- contains a value at that label, an "impossible" error will occur. unsafeRemove :: KnownSymbol l => Label l -> Rec r -> Rec (r .- l) unsafeRemove _ (OR m) = OR m {-------------------------------------------------------------------- Folds and maps --------------------------------------------------------------------} -- An easier type synonym for a pair where both elements are the same type. type IPair = Product Identity Identity -- Construct an IPair. iPair :: τ -> τ -> IPair τ iPair = (. Identity) . Pair . Identity -- Destruct an IPair. Easily used with ViewPatterns. unIPair :: IPair τ -> (τ, τ) unIPair (Pair (Identity x) (Identity y)) = (x,y) -- | A standard fold erase :: forall c ρ b. Forall ρ c => (forall a. c a => a -> b) -> Rec ρ -> [b] erase f = fmap (snd @String) . eraseWithLabels @c f -- | A fold with labels eraseWithLabels :: forall c ρ s b. (Forall ρ c, IsString s) => (forall a. c a => a -> b) -> Rec ρ -> [(s,b)] eraseWithLabels f = getConst . metamorph @_ @ρ @c @Rec @(Const [(s,b)]) @Identity Proxy doNil doUncons doCons where doNil _ = Const [] doUncons l r = (Identity $ r .! l, unsafeRemove l r) doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ) => Label ℓ -> Identity τ -> Const [(s,b)] ('R ρ) -> Const [(s,b)] ('R (ℓ :-> τ ': ρ)) doCons l (Identity x) (Const c) = Const $ (show' l, f x) : c -- | A fold over two row type structures at once eraseZip :: forall c ρ b. Forall ρ c => (forall a. c a => a -> a -> b) -> Rec ρ -> Rec ρ -> [b] eraseZip f x y = getConst $ metamorph @_ @ρ @c @(Product Rec Rec) @(Const [b]) @IPair Proxy (const $ Const []) doUncons doCons (Pair x y) where doUncons l (Pair r1 r2) = (iPair a b, Pair r1' r2') where (a, r1') = (r1 .! l, unsafeRemove l r1) (b, r2') = (r2 .! l, unsafeRemove l r2) doCons :: forall ℓ τ ρ. c τ => Label ℓ -> IPair τ -> Const [b] ('R ρ) -> Const [b] ('R (ℓ :-> τ ': ρ)) doCons _ (unIPair -> x) (Const c) = Const $ uncurry f x : c -- | Turns a record into a 'HashMap' from values representing the labels to -- the values of the record. eraseToHashMap :: forall c r s b. (IsString s, Eq s, Hashable s, Forall r c) => (forall a . c a => a -> b) -> Rec r -> HashMap s b eraseToHashMap f r = M.fromList $ eraseWithLabels @c f r -- | RMap is used internally as a type level lambda for defining record maps. newtype RMap (f :: * -> *) (ρ :: Row *) = RMap { unRMap :: Rec (Map f ρ) } newtype RMap2 (f :: * -> *) (g :: * -> *) (ρ :: Row *) = RMap2 { unRMap2 :: Rec (Map f (Map g ρ)) } -- | A function to map over a record given a constraint. map :: forall c f r. Forall r c => (forall a. c a => a -> f a) -> Rec r -> Rec (Map f r) map f = unRMap . metamorph @_ @r @c @Rec @(RMap f) @Identity Proxy doNil doUncons doCons where doNil _ = RMap empty doUncons l r = (Identity $ r .! l, unsafeRemove l r) doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ) => Label ℓ -> Identity τ -> RMap f ('R ρ) -> RMap f ('R (ℓ :-> τ ': ρ)) doCons l (Identity v) (RMap r) = RMap (unsafeInjectFront l (f v) r) newtype RFMap (g :: k1 -> k2) (ϕ :: Row (k2 -> *)) (ρ :: Row k1) = RFMap { unRFMap :: Rec (Ap ϕ (Map g ρ)) } newtype RecAp (ϕ :: Row (k -> *)) (ρ :: Row k) = RecAp (Rec (Ap ϕ ρ)) newtype App (f :: k -> *) (a :: k) = App (f a) -- | A function to map over a Ap record given constraints. mapF :: forall k c g (ϕ :: Row (k -> *)) (ρ :: Row k). BiForall ϕ ρ c => (forall f a. (c f a) => f a -> f (g a)) -> Rec (Ap ϕ ρ) -> Rec (Ap ϕ (Map g ρ)) mapF f = unRFMap . biMetamorph @_ @_ @ϕ @ρ @c @RecAp @(RFMap g) @App Proxy doNil doUncons doCons . RecAp where doNil _ = RFMap empty doUncons l (RecAp r) = (App $ r .! l, RecAp $ unsafeRemove l r) doCons :: forall ℓ τ1 τ2 ρ1 ρ2. (KnownSymbol ℓ, c τ1 τ2) => Label ℓ -> App τ1 τ2 -> RFMap g ('R ρ1) ('R ρ2) -> RFMap g ('R (ℓ :-> τ1 ': ρ1)) ('R (ℓ :-> τ2 ': ρ2)) doCons l (App v) (RFMap r) = RFMap (unsafeInjectFront l (f @τ1 @τ2 v) r) -- | A function to map over a record given no constraint. map' :: forall f r. Forall r Unconstrained1 => (forall a. a -> f a) -> Rec r -> Rec (Map f r) map' = map @Unconstrained1 -- | Lifts a natural transformation over a record. In other words, it acts as a -- record transformer to convert a record of @f a@ values to a record of @g a@ -- values. If no constraint is needed, instantiate the first type argument with -- 'Unconstrained1' or use 'transform''. transform :: forall c r (f :: * -> *) (g :: * -> *). Forall r c => (forall a. c a => f a -> g a) -> Rec (Map f r) -> Rec (Map g r) transform f = unRMap . metamorph @_ @r @c @(RMap f) @(RMap g) @f Proxy doNil doUncons doCons . RMap where doNil _ = RMap empty doUncons l (RMap r) = (r .! l, RMap $ unsafeRemove l r) doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ) => Label ℓ -> f τ -> RMap g ('R ρ) -> RMap g ('R (ℓ :-> τ ': ρ)) doCons l v (RMap r) = RMap (unsafeInjectFront l (f v) r) -- | A version of 'transform' for when there is no constraint. transform' :: forall r (f :: * -> *) (g :: * -> *). Forall r Unconstrained1 => (forall a. f a -> g a) -> Rec (Map f r) -> Rec (Map g r) transform' = transform @Unconstrained1 @r -- | A version of 'sequence' in which the constraint for 'Forall' can be chosen. sequence' :: forall f r c. (Forall r c, Applicative f) => Rec (Map f r) -> f (Rec r) sequence' = getCompose . metamorph @_ @r @c @(RMap f) @(Compose f Rec) @f Proxy doNil doUncons doCons . RMap where doNil _ = Compose (pure empty) doUncons l (RMap r) = (r .! l, RMap $ unsafeRemove l r) doCons l fv (Compose fr) = Compose $ unsafeInjectFront l <$> fv <*> fr -- | Applicative sequencing over a record. sequence :: forall f r. (Forall r Unconstrained1, Applicative f) => Rec (Map f r) -> f (Rec r) sequence = sequence' @_ @_ @Unconstrained1 -- $compose -- We can easily convert between mapping two functors over the types of a row -- and mapping the composition of the two functors. The following two functions -- perform this composition with the gaurantee that: -- -- >>> compose . uncompose = id -- -- >>> uncompose . compose = id -- | A version of 'compose' in which the constraint for 'Forall' can be chosen. compose' :: forall c (f :: * -> *) (g :: * -> *) (r :: Row *) . Forall r c => Rec (Map f (Map g r)) -> Rec (Map (Compose f g) r) compose' = unRMap . metamorph @_ @r @c @(RMap2 f g) @(RMap (Compose f g)) @(Compose f g) Proxy doNil doUncons doCons . RMap2 where doNil _ = RMap empty doUncons l (RMap2 r) = (Compose $ r .! l, RMap2 $ unsafeRemove l r) doCons l v (RMap r) = RMap $ unsafeInjectFront l v r -- | Convert from a record where two functors have been mapped over the types to -- one where the composition of the two functors is mapped over the types. compose :: forall (f :: * -> *) (g :: * -> *) r . Forall r Unconstrained1 => Rec (Map f (Map g r)) -> Rec (Map (Compose f g) r) compose = compose' @Unconstrained1 @f @g @r -- | A version of 'uncompose' in which the constraint for 'Forall' can be chosen. uncompose' :: forall c (f :: * -> *) (g :: * -> *) r . Forall r c => Rec (Map (Compose f g) r) -> Rec (Map f (Map g r)) uncompose' = unRMap2 . metamorph @_ @r @c @(RMap (Compose f g)) @(RMap2 f g) @(Compose f g) Proxy doNil doUncons doCons . RMap where doNil _ = RMap2 empty doUncons l (RMap r) = (r .! l, RMap $ unsafeRemove l r) doCons l (Compose v) (RMap2 r) = RMap2 $ unsafeInjectFront l v r -- | Convert from a record where the composition of two functors have been mapped -- over the types to one where the two functors are mapped individually one at a -- time over the types. uncompose :: forall (f :: * -> *) (g :: * -> *) r . Forall r Unconstrained1 => Rec (Map (Compose f g) r) -> Rec (Map f (Map g r)) uncompose = uncompose' @Unconstrained1 @f @g @r -- | Coerce a record to a coercible representation. The 'BiForall' in the context -- indicates that the type of every field in @r1@ can be coerced to the type of -- the corresponding fields in @r2@. -- -- Internally, this is implemented just with `unsafeCoerce`, but we provide the -- following implementation as a proof: -- -- > newtype ConstR a b = ConstR (Rec a) -- > newtype FlipConstR a b = FlipConstR { unFlipConstR :: Rec b } -- > coerceRec = unFlipConstR . biMetamorph @_ @_ @r1 @r2 @Coercible @ConstR @FlipConstR @Const Proxy doNil doUncons doCons . ConstR -- > where -- > doNil _ = FlipConstR empty -- > doUncons l (ConstR r) = (Const (r .! l), ConstR (unsafeRemove l r)) -- > doCons l (Const v) (FlipConstR r) = FlipConstR $ unsafeInjectFront l (coerce v) r coerceRec :: forall r1 r2. BiForall r1 r2 Coercible => Rec r1 -> Rec r2 coerceRec = unsafeCoerce -- | RZipPair is used internally as a type level lambda for zipping records. newtype RecPair (ρ1 :: Row *) (ρ2 :: Row *) = RecPair (Rec ρ1, Rec ρ2) newtype RZipPair (ρ1 :: Row *) (ρ2 :: Row *) = RZipPair { unRZipPair :: Rec (Zip ρ1 ρ2) } -- | Zips together two records that have the same set of labels. zip :: forall r1 r2. BiForall r1 r2 Unconstrained2 => Rec r1 -> Rec r2 -> Rec (Zip r1 r2) zip r1 r2 = unRZipPair $ biMetamorph @_ @_ @r1 @r2 @Unconstrained2 @RecPair @RZipPair @(,) Proxy doNil doUncons doCons $ RecPair (r1, r2) where doNil _ = RZipPair empty doUncons l (RecPair (r1, r2)) = ((r1 .! l, r2 .! l), RecPair (unsafeRemove l r1, unsafeRemove l r2)) doCons l (v1, v2) (RZipPair r) = RZipPair $ unsafeInjectFront l (v1, v2) r -- | A helper function for unsafely adding an element to the front of a record. -- This can cause the resulting record to be malformed, for instance, if the record -- already contains labels that are lexicographically before the given label. -- Realistically, this function should only be used when writing calls to 'metamorph'. unsafeInjectFront :: KnownSymbol l => Label l -> a -> Rec (R r) -> Rec (R (l :-> a ': r)) unsafeInjectFront (toKey -> a) b (OR m) = OR $ M.insert a (HideType b) m {-# INLINE unsafeInjectFront #-} {-------------------------------------------------------------------- Record initialization --------------------------------------------------------------------} -- | Initialize a record with a default value at each label. default' :: forall c ρ. (Forall ρ c, AllUniqueLabels ρ) => (forall a. c a => a) -> Rec ρ default' v = runIdentity $ defaultA @c $ pure v -- | Initialize a record with a default value at each label; works over an 'Applicative'. defaultA :: forall c f ρ. (Applicative f, Forall ρ c, AllUniqueLabels ρ) => (forall a. c a => f a) -> f (Rec ρ) defaultA v = fromLabelsA @c $ pure v -- | Initialize a record, where each value is determined by the given function over -- the label at that value. fromLabels :: forall c ρ. (Forall ρ c, AllUniqueLabels ρ) => (forall l a. (KnownSymbol l, c a) => Label l -> a) -> Rec ρ fromLabels f = runIdentity $ fromLabelsA @c $ (pure .) f -- | Initialize a record, where each value is determined by the given function over -- the label at that value. This function works over an 'Applicative'. fromLabelsA :: forall c f ρ. (Applicative f, Forall ρ c, AllUniqueLabels ρ) => (forall l a. (KnownSymbol l, c a) => Label l -> f a) -> f (Rec ρ) fromLabelsA mk = getCompose $ metamorph @_ @ρ @c @(Const ()) @(Compose f Rec) @(Const ()) Proxy doNil doUncons doCons (Const ()) where doNil _ = Compose $ pure empty doUncons _ _ = (Const (), Const ()) doCons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ) => Label ℓ -> Const () τ -> Compose f Rec ('R ρ) -> Compose f Rec ('R (ℓ :-> τ ': ρ)) doCons l _ (Compose r) = Compose $ unsafeInjectFront l <$> mk l <*> r -- | Initialize a record that is produced by a `Map`. fromLabelsMapA :: forall c f g ρ. (Applicative f, Forall ρ c, AllUniqueLabels ρ) => (forall l a. (KnownSymbol l, c a) => Label l -> f (g a)) -> f (Rec (Map g ρ)) fromLabelsMapA f = fromLabelsA @(IsA c g) @f @(Map g ρ) inner \\ mapForall @g @c @ρ \\ uniqueMap @g @ρ where inner :: forall l a. (KnownSymbol l, IsA c g a) => Label l -> f a inner l = case as @c @g @a of As -> f l {-------------------------------------------------------------------- Dynamic compatibility --------------------------------------------------------------------} -- | Converts a 'Rec' into a 'HashMap' of 'Dynamic's. toDynamicMap :: Forall r Typeable => Rec r -> HashMap Text Dynamic toDynamicMap = eraseToHashMap @Typeable @_ @Text @Dynamic toDyn -- | Produces a 'Rec' from a 'HashMap' of 'Dynamic's. fromDynamicMap :: (AllUniqueLabels r, Forall r Typeable) => HashMap Text Dynamic -> Maybe (Rec r) fromDynamicMap m = fromLabelsA @Typeable $ \ (toKey -> k) -> M.lookup k m >>= fromDynamic {-------------------------------------------------------------------- Generic instance --------------------------------------------------------------------} -- The generic structure we want Recs to have is not the hidden internal one, -- but rather one that appears as a Haskell record. Thus, we can't derive -- Generic automatically. -- -- The following Generic instance creates a representation of a Rec that is -- very similar to a native Haskell record except that the tree of pairs (':*:') -- that it produces will be extremely unbalanced. I don't think this is a problem. -- Furthermore, because we don't want Recs to always have a trailing unit on -- the end, we must have a special case for singleton Recs, which means that -- we can't use metamorph. instance GenericRec r => G.Generic (Rec r) where type Rep (Rec r) = G.D1 ('G.MetaData "Rec" "Data.Row.Records" "row-types" 'False) (G.C1 ('G.MetaCons "Rec" 'G.PrefixI 'True) (RepRec r)) from = G.M1 . G.M1 . fromRec to = toRec . G.unM1 . G.unM1 class GenericRec r where type RepRec (r :: Row *) :: * -> * fromRec :: Rec r -> RepRec r x toRec :: RepRec r x -> Rec r instance GenericRec Empty where type RepRec (R '[]) = G.U1 fromRec _ = G.U1 toRec _ = empty instance KnownSymbol name => GenericRec (R '[name :-> t]) where type RepRec (R (name :-> t ': '[])) = G.S1 ('G.MetaSel ('Just name) 'G.NoSourceUnpackedness 'G.NoSourceStrictness 'G.DecidedLazy) (G.Rec0 t) fromRec (_ :== a) = G.M1 (G.K1 a) toRec (G.M1 (G.K1 a)) = (Label @name) :== a instance ( GenericRec (R (name' :-> t' ': r')) , KnownSymbol name ) => GenericRec (R (name :-> t ': (name' :-> t' ': r'))) where type RepRec (R (name :-> t ': (name' :-> t' ': r'))) = (G.S1 ('G.MetaSel ('Just name) 'G.NoSourceUnpackedness 'G.NoSourceStrictness 'G.DecidedLazy) (G.Rec0 t)) G.:*: RepRec (R (name' :-> t' ': r')) fromRec r = G.M1 (G.K1 (r .! Label @name)) G.:*: fromRec (unsafeRemove @name Label r) toRec (G.M1 (G.K1 a) G.:*: r) = unsafeInjectFront (Label @name) a (toRec r) {-------------------------------------------------------------------- Native data type compatibility --------------------------------------------------------------------} -- ToNative is shamelessly copied from -- https://www.athiemann.net/2017/07/02/superrecord.html -- $native -- The 'toNative' and 'fromNative' functions allow one to convert between -- 'Rec's and regular Haskell data types ("native" types) that have a single constructor and any -- number of named fields with the same names and types as the 'Rec'. As expected, -- they compose to form the identity. Alternatively, one may use 'toNativeGeneral', -- which allows fields to be dropped when a record has excess fields compared -- to the native type. Because of this, 'toNativeGeneral' requires a type -- application (although 'fromNative' does not). The only requirement is that -- the native Haskell data type be an instance of 'Generic'. -- -- For example, consider the following simple data type: -- -- >>> data Person = Person { name :: String, age :: Int} deriving (Generic, Show) -- -- Then, we have the following: -- -- >>> toNative @Person $ #name .== "Alice" .+ #age .== 7 .+ #hasDog .== True -- Person {name = "Alice", age = 7} -- >>> fromNative $ Person "Bob" 9 -- { age=9, name="Bob" } type family NativeRow t where NativeRow t = NativeRowG (G.Rep t) type family NativeRowG t where NativeRowG (G.M1 G.D m cs) = NativeRowG cs NativeRowG (G.M1 G.C m cs) = NativeRowG cs NativeRowG G.U1 = Empty NativeRowG (l G.:*: r) = NativeRowG l .+ NativeRowG r NativeRowG (G.M1 G.S ('G.MetaSel ('Just name) p s l) (G.Rec0 t)) = name .== t -- | Conversion helper to turn a Haskell record into a row-types extensible -- record. Note that the native Haskell type must be an instance of 'Generic'. class FromNativeG a where fromNative' :: a x -> Rec (NativeRowG a) instance FromNativeG cs => FromNativeG (G.D1 m cs) where fromNative' (G.M1 xs) = fromNative' xs instance FromNativeG cs => FromNativeG (G.C1 m cs) where fromNative' (G.M1 xs) = fromNative' xs instance FromNativeG G.U1 where fromNative' G.U1 = empty instance KnownSymbol name => FromNativeG (G.S1 ('G.MetaSel ('Just name) p s l) (G.Rec0 t)) where fromNative' (G.M1 (G.K1 x)) = (Label @name) .== x instance (FromNativeG l, FromNativeG r) => FromNativeG (l G.:*: r) where fromNative' (x G.:*: y) = fromNative' @l x .+ fromNative' @r y type FromNative t = (G.Generic t, FromNativeG (G.Rep t)) -- | Convert a Haskell record to a row-types Rec. fromNative :: FromNative t => t -> Rec (NativeRow t) fromNative = fromNative' . G.from -- | Conversion helper to bring a record back into a Haskell type. Note that the -- native Haskell type must be an instance of 'Generic'. class ToNativeG a where toNative' :: Rec (NativeRowG a) -> a x instance ToNativeG cs => ToNativeG (G.D1 m cs) where toNative' xs = G.M1 $ toNative' xs instance ToNativeG cs => ToNativeG (G.C1 m cs) where toNative' xs = G.M1 $ toNative' xs instance ToNativeG G.U1 where toNative' _ = G.U1 instance (KnownSymbol name) => ToNativeG (G.S1 ('G.MetaSel ('Just name) p s l) (G.Rec0 t)) where toNative' r = G.M1 $ G.K1 $ r .! (Label @name) instance (ToNativeG l, ToNativeG r, Disjoint (NativeRowG l) (NativeRowG r)) => ToNativeG (l G.:*: r) where toNative' r = toNative' r1 G.:*: toNative' r2 where (r1 :: Rec (NativeRowG l)) :+ (r2 :: Rec (NativeRowG r)) = r type ToNative t = (G.Generic t, ToNativeG (G.Rep t)) -- | Convert a record to an exactly matching native Haskell type. toNative :: ToNative t => Rec (NativeRow t) -> t toNative = G.to . toNative' -- | Conversion helper to bring a record back into a Haskell type. Note that the -- native Haskell type must be an instance of 'Generic'. class ToNativeGeneralG a ρ where toNativeGeneral' :: Rec ρ -> a x instance ToNativeGeneralG cs ρ => ToNativeGeneralG (G.D1 m cs) ρ where toNativeGeneral' xs = G.M1 $ toNativeGeneral' xs instance ToNativeGeneralG cs ρ => ToNativeGeneralG (G.C1 m cs) ρ where toNativeGeneral' xs = G.M1 $ toNativeGeneral' xs instance ToNativeGeneralG G.U1 ρ where toNativeGeneral' _ = G.U1 instance (KnownSymbol name, ρ .! name ≈ t) => ToNativeGeneralG (G.S1 ('G.MetaSel ('Just name) p s l) (G.Rec0 t)) ρ where toNativeGeneral' r = G.M1 $ G.K1 $ r .! (Label @name) instance (ToNativeGeneralG l ρ, ToNativeGeneralG r ρ) => ToNativeGeneralG (l G.:*: r) ρ where toNativeGeneral' r = toNativeGeneral' r G.:*: toNativeGeneral' r type ToNativeGeneral t ρ = (G.Generic t, ToNativeGeneralG (G.Rep t) ρ) -- | Convert a record to a native Haskell type. toNativeGeneral :: ToNativeGeneral t ρ => Rec ρ -> t toNativeGeneral = G.to . toNativeGeneral' {-------------------------------------------------------------------- Generic-lens compatibility --------------------------------------------------------------------} -- | Every field in a row-types based record has a 'HasField' instance. instance {-# OVERLAPPING #-} ( KnownSymbol name , r' .! name ≈ b , r .! name ≈ a , r' ~ Modify name b r , r ~ Modify name a r') => HasField name (Rec r) (Rec r') a b where field = focus (Label @name) {-# INLINE field #-} instance {-# OVERLAPPING #-} ( KnownSymbol name , r .! name ≈ a , r ~ Modify name a r) => HasField' name (Rec r) a where field' = focus (Label @name) {-# INLINE field' #-}