{-# LANGUAGE CPP #-} {-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE InstanceSigs #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE UndecidableSuperClasses #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Row.Internal -- -- This module implements the internals of open records and variants. -- ----------------------------------------------------------------------------- module Data.Row.Internal ( -- * Rows Row(..) , Label(..) , KnownSymbol , LT(..) , Empty , HideType(..) -- * Row Operations , Extend, Modify, Rename , type (.==), type (.!), type (.-), type (.\\) -- $merges , type (.+), type (.\/), type (.//) -- * Row Constraints , Lacks, type (.\), HasType , Forall(..) , BiForall(..) , BiConstraint , Unconstrained , Unconstrained1 , Unconstrained2 , FrontExtends(..) , FrontExtendsDict(..) , WellBehaved, AllUniqueLabels , Ap, ApSingle, Zip, Map, Subset, Disjoint -- * Helper functions , Labels, labels, labels' , show' , toKey , type (≈) ) where import Data.Bifunctor (Bifunctor(..)) import Data.Constraint import Data.Functor.Const import Data.Proxy import Data.String (IsString (fromString)) import Data.Text (Text) import qualified Data.Text as Text import Data.Type.Equality (type (==)) import GHC.OverloadedLabels import GHC.TypeLits import qualified GHC.TypeLits as TL {-------------------------------------------------------------------- Rows --------------------------------------------------------------------} -- | The kind of rows. This type is only used as a datakind. A row is a typelevel entity telling us -- which symbols are associated with which types. newtype Row a = R [LT a] -- ^ A row is a list of symbol-to-type pairs that should always be sorted -- lexically by the symbol. -- The constructor is exported here (because this is an internal module) but -- should not be exported elsewhere. -- | The kind of elements of rows. Each element is a label and its associated type. data LT a = Symbol :-> a -- | A label data Label (s :: Symbol) = Label deriving (Eq) instance KnownSymbol s => Show (Label s) where show = symbolVal instance x ≈ y => IsLabel x (Label y) where #if __GLASGOW_HASKELL__ >= 802 fromLabel = Label #else fromLabel _ = Label #endif -- | A helper function for showing labels show' :: (IsString s, Show a) => a -> s show' = fromString . show -- | A helper function to turn a Label directly into 'Text'. toKey :: forall s. KnownSymbol s => Label s -> Text toKey = Text.pack . symbolVal -- | Type level version of 'empty' type Empty = R '[] -- | Elements stored in a Row type are usually hidden. data HideType where HideType :: a -> HideType {-------------------------------------------------------------------- Row operations --------------------------------------------------------------------} infixl 4 .\ {- This comment needed to appease CPP -} -- | Does the row lack (i.e. it does not have) the specified label? type family (r :: Row k) .\ (l :: Symbol) :: Constraint where R r .\ l = LacksR l r r -- | Type level Row extension type family Extend (l :: Symbol) (a :: k) (r :: Row k) :: Row k where Extend l a (R x) = R (Inject (l :-> a) x) -- | Type level Row modification type family Modify (l :: Symbol) (a :: k) (r :: Row k) :: Row k where Modify l a (R ρ) = R (ModifyR l a ρ) -- | Type level row renaming type family Rename (l :: Symbol) (l' :: Symbol) (r :: Row k) :: Row k where Rename l l' r = Extend l' (r .! l) (r .- l) infixl 5 .! -- | Type level label fetching type family (r :: Row k) .! (t :: Symbol) :: k where R r .! l = Get l r infixl 6 .- -- | Type level Row element removal type family (r :: Row k) .- (s :: Symbol) :: Row k where R r .- l = R (Remove l r) infixl 6 .\\ {- This comment needed to appease CPP -} -- | Type level Row difference. That is, @l '.\\' r@ is the row remaining after -- removing any matching elements of @r@ from @l@. type family (l :: Row k) .\\ (r :: Row k) :: Row k where R l .\\ R r = R (Diff l r) -- $merges -- == Various row-type merges -- The difference between '.+' (read "append"), '.\/' (read "min-join"), and -- '.\\' (read "const-union") comes down to how duplicates are handled. -- In '.+', the two given row-types must be entirely unique. Even the same -- entry in both row-types is forbidden. In '.\/', this final restriction is -- relaxed, allowing two row-types that have no conflicts to be merged in the -- logical way. The '.\\' operator is the most liberal, allowing any two row-types -- to be merged together, and whenever there is a conflict, favoring the left argument. -- -- As examples of use: -- -- - '.+' is used when appending two records, assuring that those two records are -- entirely disjoint. -- -- - '.\/' is used when diversifying a variant, allowing some extension to the -- row-type so long as no original types have changed. -- -- - './/' is used when doing record overwrite, allowing data in a record to -- totally overwrite what was previously there. infixl 6 .+ -- | Type level Row append type family (l :: Row k) .+ (r :: Row k) :: Row k where R l .+ R r = R (Merge l r) infixl 6 .\/ -- | The minimum join of the two rows. type family (l :: Row k) .\/ (r :: Row k) where R l .\/ R r = R (MinJoinR l r) infixl 6 .// -- | The overwriting union, where the left row overwrites the types of the right -- row where the labels overlap. type family (l :: Row k) .// (r :: Row k) where R l .// R r = R (ConstUnionR l r) {-------------------------------------------------------------------- Syntactic sugar for record operations --------------------------------------------------------------------} -- | Alias for '.\'. It is a class rather than an alias, so that -- it can be partially applied. class Lacks (l :: Symbol) (r :: Row *) instance (r .\ l) => Lacks l r -- | Alias for @(r .! l) ≈ a@. It is a class rather than an alias, so that -- it can be partially applied. class (r .! l ≈ a) => HasType l a r instance (r .! l ≈ a) => HasType l a r -- | A type level way to create a singleton Row. infix 7 .== type (l :: Symbol) .== (a :: k) = Extend l a Empty {-------------------------------------------------------------------- Constrained record operations --------------------------------------------------------------------} -- | A dictionary of information that proves that extending a row-type @r@ with -- a label @l@ will necessarily put it to the front of the underlying row-type -- list. This is quite internal and should not generally be necessary. data FrontExtendsDict l t r = forall ρ. FrontExtendsDict (Dict (r ~ R ρ, R (l :-> t ': ρ) ≈ Extend l t (R ρ), AllUniqueLabelsR (l :-> t ': ρ))) -- | A class wrapper for 'FrontExtendsDict'. class FrontExtends l t r where frontExtendsDict :: FrontExtendsDict l t r instance (r ~ R ρ, R (l :-> t ': ρ) ≈ Extend l t (R ρ), AllUniqueLabelsR (l :-> t ': ρ)) => FrontExtends l t r where frontExtendsDict = FrontExtendsDict Dict -- | Any structure over a row in which every element is similarly constrained can -- be metamorphized into another structure over the same row. class Forall (r :: Row k) (c :: k -> Constraint) where -- | A metamorphism is an anamorphism (an unfold) followed by a catamorphism (a fold). -- The parameter 'p' describes the output of the unfold and the input of the fold. -- For records, @p = (,)@, because every entry in the row will unfold to a value paired -- with the rest of the record. -- For variants, @p = Either@, because there will either be a value or future types to -- explore. -- 'Const' can be useful when the types in the row are unnecessary. metamorph :: forall (p :: * -> * -> *) (f :: Row k -> *) (g :: Row k -> *) (h :: k -> *). Bifunctor p => Proxy (Proxy h, Proxy p) -> (f Empty -> g Empty) -- ^ The way to transform the empty element -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ, HasType ℓ τ ρ) => Label ℓ -> f ρ -> p (f (ρ .- ℓ)) (h τ)) -- ^ The unfold -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ, FrontExtends ℓ τ ρ, AllUniqueLabels (Extend ℓ τ ρ)) => Label ℓ -> p (g ρ) (h τ) -> g (Extend ℓ τ ρ)) -- ^ The fold -> f r -- ^ The input structure -> g r instance Forall (R '[]) c where {-# INLINE metamorph #-} metamorph _ empty _ _ = empty instance (KnownSymbol ℓ, c τ, Forall ('R ρ) c, FrontExtends ℓ τ ('R ρ), AllUniqueLabels (Extend ℓ τ ('R ρ))) => Forall ('R (ℓ :-> τ ': ρ) :: Row k) c where {-# INLINE metamorph #-} metamorph h empty uncons cons = case frontExtendsDict @ℓ @τ @('R ρ) of FrontExtendsDict Dict -> cons (Label @ℓ) . first (metamorph @_ @('R ρ) @c h empty uncons cons) . uncons (Label @ℓ) -- | Any structure over two rows in which the elements of each row satisfy some -- constraints can be metamorphized into another structure over both of the -- rows. class BiForall (r1 :: Row k1) (r2 :: Row k2) (c :: k1 -> k2 -> Constraint) where -- | A metamorphism is an anamorphism (an unfold) followed by a catamorphism (a fold). biMetamorph :: forall (p :: * -> * -> *) (f :: Row k1 -> Row k2 -> *) (g :: Row k1 -> Row k2 -> *) (h :: k1 -> k2 -> *). Bifunctor p => Proxy (Proxy h, Proxy p) -> (f Empty Empty -> g Empty Empty) -> (forall ℓ τ1 τ2 ρ1 ρ2. (KnownSymbol ℓ, c τ1 τ2, HasType ℓ τ1 ρ1, HasType ℓ τ2 ρ2) => Label ℓ -> f ρ1 ρ2 -> p (f (ρ1 .- ℓ) (ρ2 .- ℓ)) (h τ1 τ2)) -> (forall ℓ τ1 τ2 ρ1 ρ2. (KnownSymbol ℓ, c τ1 τ2, FrontExtends ℓ τ1 ρ1, FrontExtends ℓ τ2 ρ2, AllUniqueLabels (Extend ℓ τ1 ρ1), AllUniqueLabels (Extend ℓ τ2 ρ2)) => Label ℓ -> p (g ρ1 ρ2) (h τ1 τ2) -> g (Extend ℓ τ1 ρ1) (Extend ℓ τ2 ρ2)) -> f r1 r2 -> g r1 r2 instance BiForall (R '[]) (R '[]) c1 where {-# INLINE biMetamorph #-} biMetamorph _ empty _ _ = empty instance (KnownSymbol ℓ, c τ1 τ2, BiForall ('R ρ1) ('R ρ2) c, FrontExtends ℓ τ1 ('R ρ1), FrontExtends ℓ τ2 ('R ρ2), AllUniqueLabels (Extend ℓ τ1 ('R ρ1)), AllUniqueLabels (Extend ℓ τ2 ('R ρ2))) => BiForall ('R (ℓ :-> τ1 ': ρ1)) ('R (ℓ :-> τ2 ': ρ2)) c where {-# INLINE biMetamorph #-} biMetamorph h empty uncons cons = case (frontExtendsDict @ℓ @τ1 @('R ρ1), frontExtendsDict @ℓ @τ2 @('R ρ2)) of (FrontExtendsDict Dict, FrontExtendsDict Dict) -> cons (Label @ℓ) . first (biMetamorph @_ @_ @('R ρ1) @('R ρ2) @c h empty uncons cons) . uncons (Label @ℓ) -- | A null constraint class Unconstrained instance Unconstrained -- | A null constraint of one argument class Unconstrained1 a instance Unconstrained1 a -- | A null constraint of two arguments class Unconstrained2 a b instance Unconstrained2 a b -- | A pair of constraints class (c1 x, c2 y) => BiConstraint c1 c2 x y instance (c1 x, c2 y) => BiConstraint c1 c2 x y -- | The labels in a Row. type family Labels (r :: Row a) where Labels (R '[]) = '[] Labels (R (l :-> a ': xs)) = l ': Labels (R xs) -- | Return a list of the labels in a row type. labels :: forall ρ c s. (IsString s, Forall ρ c) => [s] labels = getConst $ metamorph @_ @ρ @c @Const @(Const ()) @(Const [s]) @Proxy Proxy (const $ Const []) doUncons doCons (Const ()) where doUncons _ _ = Const $ Const () doCons l (Const (Const c)) = Const $ show' l : c -- | Return a list of the labels in a row type and is specialized to the 'Unconstrained1' constraint. labels' :: forall ρ s. (IsString s, Forall ρ Unconstrained1) => [s] labels' = labels @ρ @Unconstrained1 {-------------------------------------------------------------------- Convenient type families and classes --------------------------------------------------------------------} -- | A convenient way to provide common, easy constraints type WellBehaved ρ = (Forall ρ Unconstrained1, AllUniqueLabels ρ) -- | Are all of the labels in this Row unique? type family AllUniqueLabels (r :: Row k) :: Constraint where AllUniqueLabels (R r) = AllUniqueLabelsR r type family AllUniqueLabelsR (r :: [LT k]) :: Constraint where AllUniqueLabelsR '[] = Unconstrained AllUniqueLabelsR '[l :-> a] = Unconstrained AllUniqueLabelsR (l :-> a ': l :-> b ': _) = TypeError (TL.Text "The label " :<>: ShowType l :<>: TL.Text " is not unique." :$$: TL.Text "It is assigned to both " :<>: ShowType a :<>: TL.Text " and " :<>: ShowType b) AllUniqueLabelsR (l :-> a ': l' :-> b ': r) = AllUniqueLabelsR (l' :-> b ': r) -- | Is the first row a subset of the second? type family Subset (r1 :: Row k) (r2 :: Row k) :: Constraint where Subset (R r1) (R r2) = SubsetR r1 r2 type family SubsetR (r1 :: [LT k]) (r2 :: [LT k]) :: Constraint where SubsetR '[] _ = Unconstrained SubsetR x '[] = TypeError (TL.Text "One row-type is not a subset of the other." :$$: TL.Text "The first contains the bindings " :<>: ShowRowType x :<>: TL.Text " while the second does not.") SubsetR (l :-> a ': x) (l :-> a ': y) = SubsetR x y SubsetR (l :-> a ': x) (l :-> b ': y) = TypeError (TL.Text "One row-type is not a subset of the other." :$$: TL.Text "The first assigns the label " :<>: ShowType l :<>: TL.Text " to " :<>: ShowType a :<>: TL.Text " while the second assigns it to " :<>: ShowType b) SubsetR (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (hl <=.? hr) (TypeError (TL.Text "One row-type is not a subset of the other." :$$: TL.Text "The first assigns the label " :<>: ShowType hl :<>: TL.Text " to " :<>: ShowType al :<>: TL.Text " while the second has no assignment for it.")) (SubsetR (hl :-> al ': tl) tr) -- | A type synonym for disjointness. type Disjoint l r = ( WellBehaved l , WellBehaved r , Subset l (l .+ r) , Subset r (l .+ r) , l .+ r .\\ l ≈ r , l .+ r .\\ r ≈ l) -- | Map a type level function over a Row. type family Map (f :: a -> b) (r :: Row a) :: Row b where Map f (R r) = R (MapR f r) type family MapR (f :: a -> b) (r :: [LT a]) :: [LT b] where MapR f '[] = '[] MapR f (l :-> v ': t) = l :-> f v ': MapR f t -- | Take two rows with the same labels, and apply the type operator from the -- first row to the type of the second. type family Ap (fs :: Row (a -> b)) (r :: Row a) :: Row b where Ap (R fs) (R r) = R (ApR fs r) type family ApR (fs :: [LT (a -> b)]) (r :: [LT a]) :: [LT b] where ApR '[] '[] = '[] ApR (l :-> f ': tf) (l :-> v ': tv) = l :-> f v ': ApR tf tv ApR _ _ = TypeError (TL.Text "Row types with different label sets cannot be App'd together.") -- | Take a row of type operators and apply each to the second argument. type family ApSingle (fs :: Row (a -> b)) (x :: a) :: Row b where ApSingle (R fs) x = R (ApSingleR fs x) type family ApSingleR (fs :: [LT (a -> b)]) (x :: a) :: [LT b] where ApSingleR '[] _ = '[] ApSingleR (l ':-> f ': fs) x = l ':-> f x ': ApSingleR fs x -- | Zips two rows together to create a Row of the pairs. -- The two rows must have the same set of labels. type family Zip (r1 :: Row *) (r2 :: Row *) where Zip (R r1) (R r2) = R (ZipR r1 r2) type family ZipR (r1 :: [LT *]) (r2 :: [LT *]) where ZipR '[] '[] = '[] ZipR (l :-> t1 ': r1) (l :-> t2 ': r2) = l :-> (t1, t2) ': ZipR r1 r2 ZipR (l :-> t1 ': r1) _ = TypeError (TL.Text "Row types with different label sets cannot be zipped" :$$: TL.Text "For one, the label " :<>: ShowType l :<>: TL.Text " is not in both lists.") ZipR '[] (l :-> t ': r) = TypeError (TL.Text "Row types with different label sets cannot be zipped" :$$: TL.Text "For one, the label " :<>: ShowType l :<>: TL.Text " is not in both lists.") type family Inject (l :: LT k) (r :: [LT k]) where Inject (l :-> t) '[] = (l :-> t ': '[]) Inject (l :-> t) (l :-> t' ': x) = TypeError (TL.Text "Cannot inject a label into a row type that already has that label" :$$: TL.Text "The label " :<>: ShowType l :<>: TL.Text " was already assigned the type " :<>: ShowType t' :<>: TL.Text " and is now trying to be assigned the type " :<>: ShowType t :<>: TL.Text ".") Inject (l :-> t) (l' :-> t' ': x) = Ifte (l <=.? l') (l :-> t ': l' :-> t' ': x) (l' :-> t' ': Inject (l :-> t) x) -- | Type level Row modification helper type family ModifyR (l :: Symbol) (a :: k) (ρ :: [LT k]) :: [LT k] where ModifyR l a (l :-> a' ': ρ) = l :-> a ': ρ ModifyR l a (l' :-> a' ': ρ) = l' :-> a' ': ModifyR l a ρ ModifyR l a '[] = TypeError (TL.Text "Tried to modify the label " :<>: ShowType l :<>: TL.Text ", but it does not appear in the row-type.") type family Ifte (c :: Bool) (t :: k) (f :: k) where Ifte True t f = t Ifte False t f = f type family Get (l :: Symbol) (r :: [LT k]) where Get l '[] = TypeError (TL.Text "No such field: " :<>: ShowType l) Get l (l :-> t ': x) = t Get l (l' :-> t ': x) = Get l x type family Remove (l :: Symbol) (r :: [LT k]) where Remove l r = RemoveT l r r type family RemoveT (l :: Symbol) (r :: [LT k]) (r_orig :: [LT k]) where RemoveT l (l :-> t ': x) _ = x RemoveT l (l' :-> t ': x) r = l' :-> t ': RemoveT l x r RemoveT l '[] r = TypeError (TL.Text "Cannot remove a label that does not occur in the row type." :$$: TL.Text "The label " :<>: ShowType l :<>: TL.Text " is not in " :<>: ShowRowType r) type family LacksR (l :: Symbol) (r :: [LT k]) (r_orig :: [LT k]) :: Constraint where LacksR l '[] _ = Unconstrained LacksR l (l :-> t ': x) r = TypeError (TL.Text "The label " :<>: ShowType l :<>: TL.Text " already exists in " :<>: ShowRowType r) LacksR l (l' :-> _ ': x) r = Ifte (l <=.? l') Unconstrained (LacksR l x r) type family Merge (l :: [LT k]) (r :: [LT k]) where Merge '[] r = r Merge l '[] = l Merge (h :-> a ': tl) (h :-> a ': tr) = TypeError (TL.Text "The label " :<>: ShowType h :<>: TL.Text " (of type " :$$: ShowType a :<>: TL.Text ") has duplicate assignments.") Merge (h :-> a ': tl) (h :-> b ': tr) = TypeError (TL.Text "The label " :<>: ShowType h :<>: TL.Text " has conflicting assignments." :$$: TL.Text "Its type is both " :<>: ShowType a :<>: TL.Text " and " :<>: ShowType b :<>: TL.Text ".") Merge (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (hl <=.? hr) (hl :-> al ': Merge tl (hr :-> ar ': tr)) (hr :-> ar ': Merge (hl :-> al ': tl) tr) type family MinJoinR (l :: [LT k]) (r :: [LT k]) where MinJoinR '[] r = r MinJoinR l '[] = l MinJoinR (h :-> a ': tl) (h :-> a ': tr) = (h :-> a ': MinJoinR tl tr) MinJoinR (h :-> a ': tl) (h :-> b ': tr) = TypeError (TL.Text "The label " :<>: ShowType h :<>: TL.Text " has conflicting assignments." :$$: TL.Text "Its type is both " :<>: ShowType a :<>: TL.Text " and " :<>: ShowType b :<>: TL.Text ".") MinJoinR (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (CmpSymbol hl hr == 'LT) (hl :-> al ': MinJoinR tl (hr :-> ar ': tr)) (hr :-> ar ': MinJoinR (hl :-> al ': tl) tr) type family ConstUnionR (l :: [LT k]) (r :: [LT k]) where ConstUnionR '[] r = r ConstUnionR l '[] = l ConstUnionR (h :-> a ': tl) (h :-> b ': tr) = (h :-> a ': ConstUnionR tl tr) ConstUnionR (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (CmpSymbol hl hr == 'LT) (hl :-> al ': ConstUnionR tl (hr :-> ar ': tr)) (hr :-> ar ': ConstUnionR (hl :-> al ': tl) tr) -- | Returns the left list with all of the elements from the right list removed. type family Diff (l :: [LT k]) (r :: [LT k]) where Diff '[] r = '[] Diff l '[] = l Diff (l :-> al ': tl) (l :-> al ': tr) = Diff tl tr Diff (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (hl <=.? hr) (hl :-> al ': Diff tl (hr :-> ar ': tr)) (Diff (hl :-> al ': tl) tr) type family ShowRowType (r :: [LT k]) :: ErrorMessage where   ShowRowType '[] = TL.Text "Empty"   ShowRowType '[l ':-> t] = TL.ShowType l TL.:<>: TL.Text " .== " TL.:<>: TL.ShowType t   ShowRowType ((l ':-> t) ': r) = TL.ShowType l TL.:<>: TL.Text " .== " TL.:<>: TL.ShowType t TL.:<>: TL.Text " .+ " TL.:<>: ShowRowType r -- | There doesn't seem to be a (<=.?) :: Symbol -> Symbol -> Bool, -- so here it is in terms of other ghc-7.8 type functions type a <=.? b = (CmpSymbol a b == 'LT) -- | A lower fixity operator for type equality infix 4 ≈ type a ≈ b = a ~ b