----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Examples.BitPrecise.Legato -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer : erkokl@gmail.com -- Stability : experimental -- Portability : portable -- -- An encoding and correctness proof of Legato's multiplier in Haskell. Bill Legato came -- up with an interesting way to multiply two 8-bit numbers on Mostek, as described here: -- -- -- Here's Legato's algorithm, as coded in Mostek assembly: -- -- @ -- step1 : LDX #8 ; load X immediate with the integer 8 -- step2 : LDA #0 ; load A immediate with the integer 0 -- step3 : CLC ; set C to 0 -- step4 : LOOP ROR F1 ; rotate F1 right circular through C -- step5 : BCC ZCOEF ; branch to ZCOEF if C = 0 -- step6 : CLC ; set C to 0 -- step7 : ADC F2 ; set A to A+F2+C and C to the carry -- step8 : ZCOEF ROR A ; rotate A right circular through C -- step9 : ROR LOW ; rotate LOW right circular through C -- step10: DEX ; set X to X-1 -- step11: BNE LOOP ; branch to LOOP if Z = 0 -- @ -- -- NB. The CLC in step3 was later added by Warren Hunt; the -- original spec did not include this statement. However, without this -- addition, the algorithm does not work correctly for all starting states, -- so we adopt this change as well. -- -- This program came to be known as the Legato's challenge in the community, where -- the challenge was to prove that it indeed does perform multiplication. This file -- formalizes the Mostek architecture in Haskell and proves that Legato's algorithm -- is indeed correct. ----------------------------------------------------------------------------- module Data.SBV.Examples.BitPrecise.Legato where import Data.Array (Array, Ix(..), (!), (//), array) import Data.SBV ------------------------------------------------------------------ -- * Mostek architecture ------------------------------------------------------------------ -- | The memory is addressed by 32-bit words. type Address = SWord32 -- | We model only two registers of Mostek that is used in the above algorithm, can add more. data Register = RegX | RegA deriving (Eq, Ord, Ix, Bounded, Enum) -- | The carry flag ('FlagC') and the zero flag ('FlagZ') data Flag = FlagC | FlagZ deriving (Eq, Ord, Ix, Bounded, Enum) -- | Mostek was an 8-bit machine. type Value = SWord8 -- | Convenient synonym for symbolic machine bits. type Bit = SBool -- | Register bank type Registers = Array Register Value -- | Flag bank type Flags = Array Flag Bit -- | The memory maps 32-bit words to 8-bit words. (The 'Model' data-type is -- defined later, depending on the verification model used.) type Memory = Model Word32 Word8 -- Model defined later -- | Abstraction of the machine: The CPU consists of memory, registers, and flags. -- Unlike traditional hardware, we assume the program is stored in some other memory area that -- we need not model. (No self modifying programs!) data Mostek = Mostek { memory :: Memory , registers :: Registers , flags :: Flags } -- | Given a machine state, compute a value out of it type Extract a = Mostek -> a -- | Programs are essentially state transformers (on the machine state) type Program = Mostek -> Mostek instance Mergeable Mostek where symbolicMerge b m1 m2 = Mostek { memory = symbolicMerge b (memory m1) (memory m2) , registers = symbolicMerge b (registers m1) (registers m2) , flags = symbolicMerge b (flags m1) (flags m2) } ------------------------------------------------------------------ -- * Low-level operations ------------------------------------------------------------------ -- | Get the value of a given register getReg :: Register -> Extract Value getReg r m = registers m ! r -- | Set the value of a given register setReg :: Register -> Value -> Program setReg r v m = m {registers = registers m // [(r, v)]} -- | Get the value of a flag getFlag :: Flag -> Extract Bit getFlag f m = flags m ! f -- | Set the value of a flag setFlag :: Flag -> Bit -> Program setFlag f b m = m {flags = flags m // [(f, b)]} -- | Read memory peek :: Address -> Extract Value peek a m = readArray (memory m) a -- | Write to memory poke :: Address -> Value -> Program poke a v m = m {memory = writeArray (memory m) a v} ------------------------------------------------------------------ -- * Instruction set ------------------------------------------------------------------ -- | An instruction is modeled as a 'Program' transformer. We model -- mostek programs in direct continuation passing style. type Instruction = Program -> Program -- | LDX: Set register @X@ to value @v@ ldx :: Value -> Instruction ldx v k = k . setReg RegX v -- | LDA: Set register @A@ to value @v@ lda :: Value -> Instruction lda v k = k . setReg RegA v -- | CLC: Clear the carry flag clc :: Instruction clc k = k . setFlag FlagC false -- | ROR, memory version: Rotate the value at memory location @a@ -- to the right by 1 bit, using the carry flag as a transfer position. -- That is, the final bit of the memory location becomes the new carry -- and the carry moves over to the first bit. This very instruction -- is one of the reasons why Legato's multiplier is quite hard to understand -- and is typically presented as a verification challenge. rorM :: Address -> Instruction rorM a k m = k . setFlag FlagC c' . poke a v' $ m where v = peek a m c = getFlag FlagC m v' = setBitTo (v `rotateR` 1) 7 c c' = bitValue v 0 -- | ROR, register version: Same as 'rorM', except through register @r@. rorR :: Register -> Instruction rorR r k m = k . setFlag FlagC c' . setReg r v' $ m where v = getReg r m c = getFlag FlagC m v' = setBitTo (v `rotateR` 1) 7 c c' = bitValue v 0 -- | BCC: branch to label @l@ if the carry flag is false bcc :: Program -> Instruction bcc l k m = ite (c .== false) (l m) (k m) where c = getFlag FlagC m -- | ADC: Increment the value of register @A@ by the value of memory contents -- at address @a@, using the carry-bit as the carry-in for the addition. adc :: Address -> Instruction adc a k m = k . setFlag FlagZ (v' .== 0) . setFlag FlagC c' . setReg RegA v' $ m where v = peek a m ra = getReg RegA m c = getFlag FlagC m v' = v + ra + ite (c .== true) 1 0 c' = bitValue v' 7 -- c is true if the sum overflowed -- | DEX: Decrement the value of register @X@ dex :: Instruction dex k m = k . setFlag FlagZ (x .== 0) . setReg RegX x $ m where x = getReg RegX m - 1 -- | BNE: Branch if the zero-flag is false bne :: Program -> Instruction bne l k m = ite (z .== false) (l m) (k m) where z = getFlag FlagZ m -- | The 'end' combinator "stops" our program, providing the final continuation -- that does nothing. end :: Program end = id ------------------------------------------------------------------ -- * Legato's algorithm in Haskell/SBV ------------------------------------------------------------------ -- | Parameterized by the addresses of locations of the factors (@F1@ and @F2@), -- the following program multiplies them, storing the low-byte of the result -- in the memory location @lowAddr@, and the high-byte in register @A@. The -- implementation is a direct transliteration of Legato's algorithm given -- at the top, using our notation. legato :: Address -> Address -> Address -> Program legato f1Addr f2Addr lowAddr = start where start = ldx 8 $ lda 0 $ clc $ loop loop = rorM f1Addr $ bcc zeroCoef $ clc $ adc f2Addr $ zeroCoef zeroCoef = rorR RegA $ rorM lowAddr $ dex $ bne loop $ end ------------------------------------------------------------------ -- * Verification interface ------------------------------------------------------------------ -- | Given address/value pairs for F1 and F2, and the location of where the low-byte -- of the result should go, @runLegato@ takes an arbitrary machine state @m@ and -- returns the high and low bytes of the multiplication. runLegato :: (Address, Value) -> (Address, Value) -> Address -> Mostek -> (Value, Value) runLegato (f1Addr, f1Val) (f2Addr, f2Val) loAddr m = (getReg RegA mFinal, peek loAddr mFinal) where m0 = poke f1Addr f1Val $ poke f2Addr f2Val m mFinal = legato f1Addr f2Addr loAddr m0 -- | Helper synonym for capturing relevant bits of Mostek type InitVals = ( Value -- Content of Register X , Value -- Content of Register A , Value -- Initial contents of memory , Bit -- Value of FlagC , Bit -- Value of FlagZ ) -- | Create an instance of the Mostek machine, initialized by the memory and the relevant -- values of the registers and the flags initMachine :: Memory -> InitVals -> Mostek initMachine mem (rx, ra, mc, fc, fz) = Mostek { memory = resetArray mem mc , registers = array (minBound, maxBound) [(RegX, rx), (RegA, ra)] , flags = array (minBound, maxBound) [(FlagC, fc), (FlagZ, fz)] } -- | The correctness theorem. For all possible memory configurations, the factors (@x@ and @y@ below), the location -- of the low-byte result and the initial-values of registers and the flags, this function will return True only if -- running Legato's algorithm does indeed compute the product of @x@ and @y@ correctly. legatoIsCorrect :: Memory -> (Address, Value) -> (Address, Value) -> Address -> InitVals -> SBool legatoIsCorrect mem (addrX, x) (addrY, y) addrLow initVals = allDifferent [addrX, addrY, addrLow] -- note the conditional: addresses must be distinct! ==> result .== expected where (hi, lo) = runLegato (addrX, x) (addrY, y) addrLow (initMachine mem initVals) result = 256 * hi + lo expected = x * y ------------------------------------------------------------------ -- * Verification ------------------------------------------------------------------ -- | Choose the appropriate array model to be used for modeling the memory. (See 'Memory'.) -- The 'SFunArray' is the function based model. 'SArray' is the SMT-Lib array's based model. type Model = SFunArray -- type Model = SArray -- | The correctness theorem. -- On a decent MacBook Pro, this proof takes about 30 seconds with 'SFunArray' memory model above -- and about 30 minutes with the 'SArray' memory model correctnessTheorem :: IO ThmResult correctnessTheorem = proveWith timingSMTCfg $ forAll ["mem", "addrX", "x", "addrY", "y", "addrLow", "regX", "regA", "memVals", "flagC", "flagZ"] legatoIsCorrect