----------------------------------------------------------------------------- -- | -- Module : Data.SBV.Utils.PrettyNum -- Copyright : (c) Levent Erkok -- License : BSD3 -- Maintainer: erkokl@gmail.com -- Stability : experimental -- -- Number representations in hex/bin ----------------------------------------------------------------------------- {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# OPTIONS_GHC -Wall -Werror #-} module Data.SBV.Utils.PrettyNum ( PrettyNum(..), readBin, shex, chex, shexI, sbin, sbinI , showCFloat, showCDouble, showHFloat, showHDouble , showSMTFloat, showSMTDouble, smtRoundingMode, cvToSMTLib, mkSkolemZero ) where import Data.Char (intToDigit, ord) import Data.Int (Int8, Int16, Int32, Int64) import Data.List (isPrefixOf) import Data.Maybe (fromJust, fromMaybe, listToMaybe) import Data.Ratio (numerator, denominator) import Data.Word (Word8, Word16, Word32, Word64) import qualified Data.Set as Set import Numeric (showIntAtBase, showHex, readInt) import qualified Numeric (showHFloat) import Data.Numbers.CrackNum (floatToFP, doubleToFP) import Data.SBV.Core.Data import Data.SBV.Core.Kind (smtType) import Data.SBV.Core.AlgReals (algRealToSMTLib2) import Data.SBV.Utils.Lib (stringToQFS) -- | PrettyNum class captures printing of numbers in hex and binary formats; also supporting negative numbers. class PrettyNum a where -- | Show a number in hexadecimal, starting with @0x@ and type. hexS :: a -> String -- | Show a number in binary, starting with @0b@ and type. binS :: a -> String -- | Show a number in hexadecimal, starting with @0x@ but no type. hexP :: a -> String -- | Show a number in binary, starting with @0b@ but no type. binP :: a -> String -- | Show a number in hex, without prefix, or types. hex :: a -> String -- | Show a number in bin, without prefix, or types. bin :: a -> String -- Why not default methods? Because defaults need "Integral a" but Bool is not.. instance PrettyNum Bool where hexS = show binS = show hexP = show binP = show hex = show bin = show instance PrettyNum String where hexS = show binS = show hexP = show binP = show hex = show bin = show instance PrettyNum Word8 where hexS = shex True True (False, 8) binS = sbin True True (False, 8) hexP = shex False True (False, 8) binP = sbin False True (False, 8) hex = shex False False (False, 8) bin = sbin False False (False, 8) instance PrettyNum Int8 where hexS = shex True True (True, 8) binS = sbin True True (True, 8) hexP = shex False True (True, 8) binP = sbin False True (True, 8) hex = shex False False (True, 8) bin = sbin False False (True, 8) instance PrettyNum Word16 where hexS = shex True True (False, 16) binS = sbin True True (False, 16) hexP = shex False True (False, 16) binP = sbin False True (False, 16) hex = shex False False (False, 16) bin = sbin False False (False, 16) instance PrettyNum Int16 where hexS = shex True True (True, 16) binS = sbin True True (True, 16) hexP = shex False True (True, 16) binP = sbin False True (True, 16) hex = shex False False (True, 16) bin = sbin False False (True, 16) instance PrettyNum Word32 where hexS = shex True True (False, 32) binS = sbin True True (False, 32) hexP = shex False True (False, 32) binP = sbin False True (False, 32) hex = shex False False (False, 32) bin = sbin False False (False, 32) instance PrettyNum Int32 where hexS = shex True True (True, 32) binS = sbin True True (True, 32) hexP = shex False True (True, 32) binP = sbin False True (True, 32) hex = shex False False (True, 32) bin = sbin False False (True, 32) instance PrettyNum Word64 where hexS = shex True True (False, 64) binS = sbin True True (False, 64) hexP = shex False True (False, 64) binP = sbin False True (False, 64) hex = shex False False (False, 64) bin = sbin False False (False, 64) instance PrettyNum Int64 where hexS = shex True True (True, 64) binS = sbin True True (True, 64) hexP = shex False True (True, 64) binP = sbin False True (True, 64) hex = shex False False (True, 64) bin = sbin False False (True, 64) instance PrettyNum Integer where hexS = shexI True True binS = sbinI True True hexP = shexI False True binP = sbinI False True hex = shexI False False bin = sbinI False False instance PrettyNum CV where hexS cv | isUninterpreted cv = show cv ++ " :: " ++ show (kindOf cv) | isBoolean cv = hexS (cvToBool cv) ++ " :: Bool" | isFloat cv = let CFloat f = cvVal cv in show f ++ " :: Float\n" ++ show (floatToFP f) | isDouble cv = let CDouble d = cvVal cv in show d ++ " :: Double\n" ++ show (doubleToFP d) | isReal cv = let CAlgReal r = cvVal cv in show r ++ " :: Real" | isString cv = let CString s = cvVal cv in show s ++ " :: String" | not (isBounded cv) = let CInteger i = cvVal cv in shexI True True i | True = let CInteger i = cvVal cv in shex True True (hasSign cv, intSizeOf cv) i binS cv | isUninterpreted cv = show cv ++ " :: " ++ show (kindOf cv) | isBoolean cv = binS (cvToBool cv) ++ " :: Bool" | isFloat cv = let CFloat f = cvVal cv in show f ++ " :: Float\n" ++ show (floatToFP f) | isDouble cv = let CDouble d = cvVal cv in show d ++ " :: Double\n" ++ show (doubleToFP d) | isReal cv = let CAlgReal r = cvVal cv in show r ++ " :: Real" | isString cv = let CString s = cvVal cv in show s ++ " :: String" | not (isBounded cv) = let CInteger i = cvVal cv in sbinI True True i | True = let CInteger i = cvVal cv in sbin True True (hasSign cv, intSizeOf cv) i hexP cv | isUninterpreted cv = show cv | isBoolean cv = hexS (cvToBool cv) | isFloat cv = let CFloat f = cvVal cv in show f | isDouble cv = let CDouble d = cvVal cv in show d | isReal cv = let CAlgReal r = cvVal cv in show r | isString cv = let CString s = cvVal cv in show s | not (isBounded cv) = let CInteger i = cvVal cv in shexI False True i | True = let CInteger i = cvVal cv in shex False True (hasSign cv, intSizeOf cv) i binP cv | isUninterpreted cv = show cv | isBoolean cv = binS (cvToBool cv) | isFloat cv = let CFloat f = cvVal cv in show f | isDouble cv = let CDouble d = cvVal cv in show d | isReal cv = let CAlgReal r = cvVal cv in show r | isString cv = let CString s = cvVal cv in show s | not (isBounded cv) = let CInteger i = cvVal cv in sbinI False True i | True = let CInteger i = cvVal cv in sbin False True (hasSign cv, intSizeOf cv) i hex cv | isUninterpreted cv = show cv | isBoolean cv = hexS (cvToBool cv) | isFloat cv = let CFloat f = cvVal cv in show f | isDouble cv = let CDouble d = cvVal cv in show d | isReal cv = let CAlgReal r = cvVal cv in show r | isString cv = let CString s = cvVal cv in show s | not (isBounded cv) = let CInteger i = cvVal cv in shexI False False i | True = let CInteger i = cvVal cv in shex False False (hasSign cv, intSizeOf cv) i bin cv | isUninterpreted cv = show cv | isBoolean cv = binS (cvToBool cv) | isFloat cv = let CFloat f = cvVal cv in show f | isDouble cv = let CDouble d = cvVal cv in show d | isReal cv = let CAlgReal r = cvVal cv in show r | isString cv = let CString s = cvVal cv in show s | not (isBounded cv) = let CInteger i = cvVal cv in sbinI False False i | True = let CInteger i = cvVal cv in sbin False False (hasSign cv, intSizeOf cv) i instance (SymVal a, PrettyNum a) => PrettyNum (SBV a) where hexS s = maybe (show s) (hexS :: a -> String) $ unliteral s binS s = maybe (show s) (binS :: a -> String) $ unliteral s hexP s = maybe (show s) (hexP :: a -> String) $ unliteral s binP s = maybe (show s) (binP :: a -> String) $ unliteral s hex s = maybe (show s) (hex :: a -> String) $ unliteral s bin s = maybe (show s) (bin :: a -> String) $ unliteral s -- | Show as a hexadecimal value. First bool controls whether type info is printed -- while the second boolean controls wether 0x prefix is printed. The tuple is -- the signedness and the bit-length of the input. The length of the string -- will /not/ depend on the value, but rather the bit-length. shex :: (Show a, Integral a) => Bool -> Bool -> (Bool, Int) -> a -> String shex shType shPre (signed, size) a | a < 0 = "-" ++ pre ++ pad l (s16 (abs (fromIntegral a :: Integer))) ++ t | True = pre ++ pad l (s16 a) ++ t where t | shType = " :: " ++ (if signed then "Int" else "Word") ++ show size | True = "" pre | shPre = "0x" | True = "" l = (size + 3) `div` 4 -- | Show as hexadecimal, but for C programs. We have to be careful about -- printing min-bounds, since C does some funky casting, possibly losing -- the sign bit. In those cases, we use the defined constants in . -- We also properly append the necessary suffixes as needed. chex :: (Show a, Integral a) => Bool -> Bool -> (Bool, Int) -> a -> String chex shType shPre (signed, size) a | Just s <- (signed, size, fromIntegral a) `lookup` specials = s | True = shex shType shPre (signed, size) a ++ suffix where specials :: [((Bool, Int, Integer), String)] specials = [ ((True, 8, fromIntegral (minBound :: Int8)), "INT8_MIN" ) , ((True, 16, fromIntegral (minBound :: Int16)), "INT16_MIN") , ((True, 32, fromIntegral (minBound :: Int32)), "INT32_MIN") , ((True, 64, fromIntegral (minBound :: Int64)), "INT64_MIN") ] suffix = case (signed, size) of (False, 16) -> "U" (False, 32) -> "UL" (True, 32) -> "L" (False, 64) -> "ULL" (True, 64) -> "LL" _ -> "" -- | Show as a hexadecimal value, integer version. Almost the same as shex above -- except we don't have a bit-length so the length of the string will depend -- on the actual value. shexI :: Bool -> Bool -> Integer -> String shexI shType shPre a | a < 0 = "-" ++ pre ++ s16 (abs a) ++ t | True = pre ++ s16 a ++ t where t | shType = " :: Integer" | True = "" pre | shPre = "0x" | True = "" -- | Similar to 'shex'; except in binary. sbin :: (Show a, Integral a) => Bool -> Bool -> (Bool, Int) -> a -> String sbin shType shPre (signed,size) a | a < 0 = "-" ++ pre ++ pad size (s2 (abs (fromIntegral a :: Integer))) ++ t | True = pre ++ pad size (s2 a) ++ t where t | shType = " :: " ++ (if signed then "Int" else "Word") ++ show size | True = "" pre | shPre = "0b" | True = "" -- | Similar to 'shexI'; except in binary. sbinI :: Bool -> Bool -> Integer -> String sbinI shType shPre a | a < 0 = "-" ++ pre ++ s2 (abs a) ++ t | True = pre ++ s2 a ++ t where t | shType = " :: Integer" | True = "" pre | shPre = "0b" | True = "" -- | Pad a string to a given length. If the string is longer, then we don't drop anything. pad :: Int -> String -> String pad l s = replicate (l - length s) '0' ++ s -- | Binary printer s2 :: (Show a, Integral a) => a -> String s2 v = showIntAtBase 2 dig v "" where dig = fromJust . flip lookup [(0, '0'), (1, '1')] -- | Hex printer s16 :: (Show a, Integral a) => a -> String s16 v = showHex v "" -- | A more convenient interface for reading binary numbers, also supports negative numbers readBin :: Num a => String -> a readBin ('-':s) = -(readBin s) readBin s = case readInt 2 isDigit cvt s' of [(a, "")] -> a _ -> error $ "SBV.readBin: Cannot read a binary number from: " ++ show s where cvt c = ord c - ord '0' isDigit = (`elem` "01") s' | "0b" `isPrefixOf` s = drop 2 s | True = s -- | A version of show for floats that generates correct C literals for nan/infinite. NB. Requires "math.h" to be included. showCFloat :: Float -> String showCFloat f | isNaN f = "((float) NAN)" | isInfinite f, f < 0 = "((float) (-INFINITY))" | isInfinite f = "((float) INFINITY)" | True = Numeric.showHFloat f $ "F /* " ++ show f ++ "F */" -- | A version of show for doubles that generates correct C literals for nan/infinite. NB. Requires "math.h" to be included. showCDouble :: Double -> String showCDouble d | isNaN d = "((double) NAN)" | isInfinite d, d < 0 = "((double) (-INFINITY))" | isInfinite d = "((double) INFINITY)" | True = Numeric.showHFloat d " /* " ++ show d ++ " */" -- | A version of show for floats that generates correct Haskell literals for nan/infinite showHFloat :: Float -> String showHFloat f | isNaN f = "((0/0) :: Float)" | isInfinite f, f < 0 = "((-1/0) :: Float)" | isInfinite f = "((1/0) :: Float)" | True = show f -- | A version of show for doubles that generates correct Haskell literals for nan/infinite showHDouble :: Double -> String showHDouble d | isNaN d = "((0/0) :: Double)" | isInfinite d, d < 0 = "((-1/0) :: Double)" | isInfinite d = "((1/0) :: Double)" | True = show d -- | A version of show for floats that generates correct SMTLib literals using the rounding mode showSMTFloat :: RoundingMode -> Float -> String showSMTFloat rm f | isNaN f = as "NaN" | isInfinite f, f < 0 = as "-oo" | isInfinite f = as "+oo" | isNegativeZero f = as "-zero" | f == 0 = as "+zero" | True = "((_ to_fp 8 24) " ++ smtRoundingMode rm ++ " " ++ toSMTLibRational (toRational f) ++ ")" where as s = "(_ " ++ s ++ " 8 24)" -- | A version of show for doubles that generates correct SMTLib literals using the rounding mode showSMTDouble :: RoundingMode -> Double -> String showSMTDouble rm d | isNaN d = as "NaN" | isInfinite d, d < 0 = as "-oo" | isInfinite d = as "+oo" | isNegativeZero d = as "-zero" | d == 0 = as "+zero" | True = "((_ to_fp 11 53) " ++ smtRoundingMode rm ++ " " ++ toSMTLibRational (toRational d) ++ ")" where as s = "(_ " ++ s ++ " 11 53)" -- | Show a rational in SMTLib format toSMTLibRational :: Rational -> String toSMTLibRational r | n < 0 = "(- (/ " ++ show (abs n) ++ ".0 " ++ show d ++ ".0))" | True = "(/ " ++ show n ++ ".0 " ++ show d ++ ".0)" where n = numerator r d = denominator r -- | Convert a rounding mode to the format SMT-Lib2 understands. smtRoundingMode :: RoundingMode -> String smtRoundingMode RoundNearestTiesToEven = "roundNearestTiesToEven" smtRoundingMode RoundNearestTiesToAway = "roundNearestTiesToAway" smtRoundingMode RoundTowardPositive = "roundTowardPositive" smtRoundingMode RoundTowardNegative = "roundTowardNegative" smtRoundingMode RoundTowardZero = "roundTowardZero" -- | Convert a CV to an SMTLib2 compliant value cvToSMTLib :: RoundingMode -> CV -> String cvToSMTLib rm x | isBoolean x, CInteger w <- cvVal x = if w == 0 then "false" else "true" | isUninterpreted x, CUserSort (_, s) <- cvVal x = roundModeConvert s | isReal x, CAlgReal r <- cvVal x = algRealToSMTLib2 r | isFloat x, CFloat f <- cvVal x = showSMTFloat rm f | isDouble x, CDouble d <- cvVal x = showSMTDouble rm d | not (isBounded x), CInteger w <- cvVal x = if w >= 0 then show w else "(- " ++ show (abs w) ++ ")" | not (hasSign x) , CInteger w <- cvVal x = smtLibHex (intSizeOf x) w -- signed numbers (with 2's complement representation) is problematic -- since there's no way to put a bvneg over a positive number to get minBound.. -- Hence, we punt and use binary notation in that particular case | hasSign x , CInteger w <- cvVal x = if w == negate (2 ^ intSizeOf x) then mkMinBound (intSizeOf x) else negIf (w < 0) $ smtLibHex (intSizeOf x) (abs w) | isChar x , CChar c <- cvVal x = smtLibHex 8 (fromIntegral (ord c)) | isString x , CString s <- cvVal x = '\"' : stringToQFS s ++ "\"" | isList x , CList xs <- cvVal x = smtLibSeq (kindOf x) xs | isSet x , CSet s <- cvVal x = smtLibSet (kindOf x) s | isTuple x , CTuple xs <- cvVal x = smtLibTup (kindOf x) xs | isMaybe x , CMaybe mc <- cvVal x = smtLibMaybe (kindOf x) mc | isEither x , CEither ec <- cvVal x = smtLibEither (kindOf x) ec | True = error $ "SBV.cvtCV: Impossible happened: Kind/Value disagreement on: " ++ show (kindOf x, x) where roundModeConvert s = fromMaybe s (listToMaybe [smtRoundingMode m | m <- [minBound .. maxBound] :: [RoundingMode], show m == s]) -- Carefully code hex numbers, SMTLib is picky about lengths of hex constants. For the time -- being, SBV only supports sizes that are multiples of 4, but the below code is more robust -- in case of future extensions to support arbitrary sizes. smtLibHex :: Int -> Integer -> String smtLibHex 1 v = "#b" ++ show v smtLibHex sz v | sz `mod` 4 == 0 = "#x" ++ pad (sz `div` 4) (showHex v "") | True = "#b" ++ pad sz (showBin v "") where showBin = showIntAtBase 2 intToDigit negIf :: Bool -> String -> String negIf True a = "(bvneg " ++ a ++ ")" negIf False a = a smtLibSeq :: Kind -> [CVal] -> String smtLibSeq k [] = "(as seq.empty " ++ smtType k ++ ")" smtLibSeq (KList ek) xs = let mkSeq [e] = e mkSeq es = "(seq.++ " ++ unwords es ++ ")" mkUnit inner = "(seq.unit " ++ inner ++ ")" in mkSeq (mkUnit . cvToSMTLib rm . CV ek <$> xs) smtLibSeq k _ = error "SBV.cvToSMTLib: Impossible case (smtLibSeq), received kind: " ++ show k smtLibSet :: Kind -> RCSet CVal -> String smtLibSet k set = case set of RegularSet rs -> Set.foldr' (modify "true") (start "false") rs ComplementSet rs -> Set.foldr' (modify "false") (start "true") rs where ke = case k of KSet ek -> ek _ -> error $ "SBV.cvToSMTLib: Impossible case (smtLibSet), received kind: " ++ show k start def = "((as const " ++ smtType k ++ ") " ++ def ++ ")" modify how e s = "(store " ++ s ++ " " ++ cvToSMTLib rm (CV ke e) ++ " " ++ how ++ ")" smtLibTup :: Kind -> [CVal] -> String smtLibTup (KTuple []) _ = "mkSBVTuple0" smtLibTup (KTuple ks) xs = "(mkSBVTuple" ++ show (length ks) ++ " " ++ unwords (zipWith (\ek e -> cvToSMTLib rm (CV ek e)) ks xs) ++ ")" smtLibTup k _ = error $ "SBV.cvToSMTLib: Impossible case (smtLibTup), received kind: " ++ show k dtConstructor fld [] res = "(as " ++ fld ++ " " ++ smtType res ++ ")" dtConstructor fld args res = "((as " ++ fld ++ " " ++ smtType res ++ ") " ++ unwords args ++ ")" smtLibMaybe :: Kind -> Maybe CVal -> String smtLibMaybe km@ KMaybe{} Nothing = dtConstructor "nothing_SBVMaybe" [] km smtLibMaybe km@(KMaybe k) (Just c) = dtConstructor "just_SBVMaybe" [cvToSMTLib rm (CV k c)] km smtLibMaybe k _ = error $ "SBV.cvToSMTLib: Impossible case (smtLibMaybe), received kind: " ++ show k smtLibEither :: Kind -> Either CVal CVal -> String smtLibEither ke@(KEither k _) (Left c) = dtConstructor "left_SBVEither" [cvToSMTLib rm (CV k c)] ke smtLibEither ke@(KEither _ k) (Right c) = dtConstructor "right_SBVEither" [cvToSMTLib rm (CV k c)] ke smtLibEither k _ = error $ "SBV.cvToSMTLib: Impossible case (smtLibEither), received kind: " ++ show k -- anomaly at the 2's complement min value! Have to use binary notation here -- as there is no positive value we can provide to make the bvneg work.. (see above) mkMinBound :: Int -> String mkMinBound i = "#b1" ++ replicate (i-1) '0' -- | Create a skolem 0 for the kind mkSkolemZero :: RoundingMode -> Kind -> String mkSkolemZero _ (KUninterpreted _ (Right (f:_))) = f mkSkolemZero _ (KUninterpreted s _) = error $ "SBV.mkSkolemZero: Unexpected uninterpreted sort: " ++ s mkSkolemZero rm k = cvToSMTLib rm (mkConstCV k (0::Integer))