/********************************************************************** * Copyright (c) 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_SCALAR_ #define _SECP256K1_SCALAR_ #include "num.h" #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" #endif #if defined(EXHAUSTIVE_TEST_ORDER) #include "scalar_low.h" #elif defined(USE_SCALAR_4X64) #include "scalar_4x64.h" #elif defined(USE_SCALAR_8X32) #include "scalar_8x32.h" #else #error "Please select scalar implementation" #endif /** Clear a scalar to prevent the leak of sensitive data. */ static void secp256k1_scalar_clear(secp256k1_scalar *r); /** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */ static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count); /** Access bits from a scalar. Not constant time. */ static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count); /** Set a scalar from a big endian byte array. */ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow); /** Set a scalar to an unsigned integer. */ static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v); /** Convert a scalar to a byte array. */ static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a); /** Add two scalars together (modulo the group order). Returns whether it overflowed. */ static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b); /** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */ static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag); /** Multiply two scalars (modulo the group order). */ static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b); /** Shift a scalar right by some amount strictly between 0 and 16, returning * the low bits that were shifted off */ static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n); /** Compute the square of a scalar (modulo the group order). */ static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a); /** Compute the inverse of a scalar (modulo the group order). */ static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a); /** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */ static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a); /** Compute the complement of a scalar (modulo the group order). */ static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a); /** Check whether a scalar equals zero. */ static int secp256k1_scalar_is_zero(const secp256k1_scalar *a); /** Check whether a scalar equals one. */ static int secp256k1_scalar_is_one(const secp256k1_scalar *a); /** Check whether a scalar, considered as an nonnegative integer, is even. */ static int secp256k1_scalar_is_even(const secp256k1_scalar *a); /** Check whether a scalar is higher than the group order divided by 2. */ static int secp256k1_scalar_is_high(const secp256k1_scalar *a); /** Conditionally negate a number, in constant time. * Returns -1 if the number was negated, 1 otherwise */ static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag); #ifndef USE_NUM_NONE /** Convert a scalar to a number. */ static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a); /** Get the order of the group as a number. */ static void secp256k1_scalar_order_get_num(secp256k1_num *r); #endif /** Compare two scalars. */ static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b); #ifdef USE_ENDOMORPHISM /** Find r1 and r2 such that r1+r2*2^128 = a. */ static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a); /** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a); #endif /** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */ static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift); #endif