{-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE GADTs #-} -- | See documentation for "Shh". module Shh.Internal where import Prelude hiding (lines, unlines) import Control.Concurrent.MVar import Control.Concurrent.Async import Control.DeepSeq (force,NFData) import Control.Exception as C import Control.Monad import Control.Monad.IO.Class import Data.ByteString.Lazy (ByteString, hGetContents) import qualified Data.ByteString.Lazy as BS import Data.ByteString.Lazy.Builder.ASCII import Data.ByteString.Lazy.UTF8 (toString, fromString, lines) import qualified Data.ByteString.Lazy.Char8 as BC8 import Data.Char (isLower, isSpace, isAlphaNum, ord) import Data.List (dropWhileEnd, intercalate) import Data.List.Split (endBy, splitOn) import qualified Data.Map as Map import Data.Maybe (isJust) import Data.Typeable import GHC.IO.BufferedIO import GHC.IO.Device as IODevice hiding (read) import GHC.IO.Encoding import GHC.IO.Exception (IOErrorType(ResourceVanished)) import GHC.IO.Handle hiding (hGetContents) import GHC.IO.Handle.Internals import GHC.IO.Handle.Types import GHC.IO.Handle.Types (Handle(..)) import Language.Haskell.TH import qualified System.Directory as Dir import System.Environment (getEnv, setEnv) import System.Exit (ExitCode(..)) import System.FilePath (takeFileName, ()) import System.IO (IOMode(..), withFile, withBinaryFile, stderr, stdout, stdin) import System.IO.Error import System.Posix.Signals import System.Process import Text.Printf -- $setup -- For doc-tests. Not sure I can use TH in doc tests. -- >>> :seti -XOverloadedStrings -- >>> import Data.Monoid -- >>> let cat = exe "cat" -- >>> let echo = exe "echo" -- >>> let false = exe "false" -- >>> let head = exe "head" -- >>> let md5sum = exe "md5sum" -- >>> let printf = exe "printf" -- >>> let sleep = exe "sleep" -- >>> let true = exe "true" -- >>> let wc = exe "wc" -- >>> let xargs = exe "xargs" -- >>> let yes = exe "yes" -- >>> let some_command = writeOutput "this is stdout" >> (writeOutput "this is stderr" &> StdErr) -- | This function needs to be called in order to use the library successfully -- from GHCi. If you use the @formatPrompt@ function from the @shh-extras@ -- package, this will be automatically called for you. initInteractive :: IO () initInteractive = do hSetBuffering stdin LineBuffering -- | When a process exits with a non-zero exit code -- we throw this @Failure@ exception. -- -- The only exception to this is when a process is terminated -- by @SIGPIPE@ in a pipeline, in which case we ignore it. data Failure = Failure { failureProg :: ByteString , failureArgs :: [ByteString] , failureCode :: Int } deriving (Eq, Ord) instance Show Failure where show f = concat $ [ "Command `" ] ++ [intercalate " " (BC8.unpack (failureProg f) : map show (failureArgs f))] ++ [ "` failed [exit " , show (failureCode f) , "]" ] instance Exception Failure -- | This class is used to allow most of the operators in Shh to be -- polymorphic in their return value. This makes using them in an `IO` context -- easier (we can avoid having to prepend everything with a `runProc`). class PipeResult f where -- | Use this to send the output of on process into the input of another. -- This is just like a shells `|` operator. -- -- The result is polymorphic in its output, and can result in either -- another `Proc a` or an `IO a` depending on the context in which it is -- used. -- -- If any intermediate process throws an exception, the whole pipeline -- is canceled. -- -- The result of the last process in the chain is the result returned -- by the pipeline. -- -- >>> echo "Hello" |> wc -- 1 1 6 (|>) :: Proc b -> Proc a -> f a infixl 1 |> -- | Similar to `|!>` except that it connects stderr to stdin of the -- next process in the chain. -- -- NB: The next command to be `|>` on will recapture the stdout of -- both preceding processes, because they are both going to the same -- handle! -- -- See the `&>` and `&!>` operators for redirection. -- -- >>> echo "Ignored" |!> wc "-c" -- Ignored -- 0 (|!>) :: Proc b -> Proc a -> f a infixl 1 |!> -- | Redirect stdout of this process to another location -- -- >>> echo "Ignore me" &> Append "/dev/null" (&>) :: Proc a -> Stream -> f a infixl 9 &> -- | Redirect stderr of this process to another location -- -- >>> echo "Shh" &!> StdOut -- Shh (&!>) :: Proc a -> Stream -> f a infixl 9 &!> -- | Lift a Haskell function into a @`Proc`@. The handles are the @stdin@ -- @stdout@ and @stderr@ of the resulting @`Proc`@ nativeProc :: NFData a => (Handle -> Handle -> Handle -> IO a) -> f a -- | Flipped version of `|>` with lower precedence. -- -- >>> captureTrim <| (echo "Hello" |> wc "-c") -- "6" (<|) :: PipeResult f => Proc a -> Proc b -> f a (<|) = flip (|>) infixr 1 <| instance PipeResult IO where a |> b = runProc $ a |> b a |!> b = runProc $ a |!> b a &> s = runProc $ a &> s a &!> s = runProc $ a &!> s nativeProc f = runProc $ nativeProc f -- | Create a pipe, and close both ends on exception. The first argument -- is the read end, the second is the write end. -- -- >>> withPipe $ \r w -> hPutStr w "test" >> hClose w >> hGetLine r -- "test" withPipe :: (Handle -> Handle -> IO a) -> IO a withPipe k = bracket createPipe (\(r,w) -> hClose r `finally` hClose w) (\(r,w) -> k r w) instance PipeResult Proc where (Proc a) |> (Proc b) = Proc $ \i o e pl pw -> withPipe $ \r w -> do let a' = a i w e (pure ()) (hClose w) b' = b r o e (pure ()) (hClose r) (_, br) <- (pl >> concurrently a' b') `finally` pw pure br (Proc a) |!> (Proc b) = Proc $ \i o e pl pw -> do withPipe $ \r w -> do let a' = a i o w (pure ()) (hClose w) b' = b r o e (pure ()) (hClose r) (_, br) <- (pl >> concurrently a' b') `finally` pw pure br p &> StdOut = p (Proc f) &> StdErr = Proc $ \i _ e pl pw -> f i e e pl pw (Proc f) &> (Truncate path) = Proc $ \i _ e pl pw -> withBinaryFile (BC8.unpack path) WriteMode $ \h -> f i h e pl pw (Proc f) &> (Append path) = Proc $ \i _ e pl pw -> withBinaryFile (BC8.unpack path) AppendMode $ \h -> f i h e pl pw p &!> StdErr = p (Proc f) &!> StdOut = Proc $ \i o _ pl pw -> f i o o pl pw (Proc f) &!> (Truncate path) = Proc $ \i o _ pl pw -> withBinaryFile (BC8.unpack path) WriteMode $ \h -> f i o h pl pw (Proc f) &!> (Append path) = Proc $ \i o _ pl pw -> withBinaryFile (BC8.unpack path) AppendMode $ \h -> f i o h pl pw nativeProc f = Proc $ \i o e pl pw -> handle handler $ do pl -- We duplicate these so that you can't accidentally close the -- real ones. withDuplicates i o e $ \i' o' e' -> do (f i' o' e' >>= C.evaluate . force) `finally` (hClose i') `finally` (hClose o') `finally` (hClose e') `finally` pw where -- The resource vanished error only occurs when upstream pipe closes. -- This can only happen with the `|>` combinator, which will discard -- the result of this `Proc` anyway. If the return value is somehow -- inspected, or maybe if the exception is somehow legitimate, we -- simply package it up as an exploding return value. `runProc` will -- make sure to evaluate all `Proc`'s to WHNF in order to uncover it. -- This should never happen. *nervous* handler :: IOError -> IO a handler e | ioeGetErrorType e == ResourceVanished = pure (throw e) | otherwise = throwIO e -- | Simple @`Proc`@ that writes its argument to its @stdout@. This behaves -- very much like the standard @printf@ utility, except that there is no -- restriction as to what can be in the argument. -- -- NB: @String@ arguments are encoded as UTF8, while @ByteString@ is passed -- through. Be aware if you are using @OverloadedStrings@ that you will get -- wrong results if using unicode in your string literal and it inferes -- anything other than @String@. -- -- >>> writeOutput "Hello" -- Hello writeOutput :: (ExecArg a, PipeResult io) => a -> io () writeOutput s = nativeProc $ \_ o _ -> do mapM_ (BS.hPutStr o) (asArg s) -- | Simple @`Proc`@ that writes its argument to its @stderr@. -- See also @`writeOutput`@. -- -- >>> writeError "Hello" &> devNull -- Hello writeError :: (ExecArg a, PipeResult io) => a -> io () writeError s = nativeProc $ \_ _ e -> do mapM_ (BS.hPutStr e) (asArg s) -- | Simple @`Proc`@ that reads its input, and can react to it with an IO -- action. Does not write anything to its output. See also @`capture`@. -- -- @`readInput`@ uses lazy IO to read its stdin, and works with infinite -- inputs. -- -- >>> yes |> readInput (pure . unlines . take 3 . lines) -- "y\ny\ny\n" readInput :: (NFData a, PipeResult io) => (ByteString -> IO a) -> io a readInput f = nativeProc $ \i _ _ -> do hGetContents i >>= f -- | Join a list of @ByteString@s with newline characters, terminating it -- with a newline. unlines :: [ByteString] -> ByteString unlines = toLazyByteString . mconcat . map (\l -> lazyByteString l <> char7 '\n') -- | Like @`readInput`@, but @`split`@s the string. -- -- >>> yes |> readInputSplit "\n" (pure . take 3) -- ["y","y","y"] readInputSplit :: (NFData a, PipeResult io) => ByteString -> ([ByteString] -> IO a) -> io a readInputSplit s f = readInput (f . split s) -- | Like @`readInput`@, but @`split`@s the string on the 0 byte. -- -- >>> writeOutput "1\0\&2\0" |> readInputSplit0 pure -- ["1","2"] readInputSplit0 :: (NFData a, PipeResult io) => ([ByteString] -> IO a) -> io a readInputSplit0 = readInputSplit "\0" -- | Like @`readInput`@, but @`split`@s the string on new lines. -- -- >>> writeOutput "a\nb\n" |> readInputLines pure -- ["a","b"] readInputLines :: (NFData a, PipeResult io) => ([ByteString] -> IO a) -> io a readInputLines = readInputSplit "\n" -- | Creates a pure @`Proc`@ that simple transforms the @stdin@ and writes -- it to @stdout@. The input can be infinite. -- -- >>> yes |> pureProc (BS.take 4) |> capture -- "y\ny\n" pureProc :: PipeResult io => (ByteString -> ByteString) -> io () pureProc f = nativeProc $ \i o _ -> do s <- hGetContents i BS.hPutStr o (f s) -- | Captures the stdout of a process and prefixes all the lines with -- the given string. -- -- >>> some_command |> prefixLines "stdout: " |!> prefixLines "stderr: " &> StdErr -- stdout: this is stdout -- stderr: this is stderr prefixLines :: PipeResult io => ByteString -> io () prefixLines s = pureProc $ \inp -> toLazyByteString $ mconcat $ map (\l -> lazyByteString s <> lazyByteString l <> char7 '\n') (lines inp) -- | Provide the stdin of a `Proc` from a `ByteString` -- -- Same as @`writeOutput` s |> p@ writeProc :: PipeResult io => Proc a -> ByteString -> io a writeProc p s = writeOutput s |> p -- | Run a process and capture its output lazily. Once the continuation -- is completed, the handles are closed. However, the process is run -- until it naturally terminates in order to capture the correct exit -- code. Most utilities behave correctly with this (e.g. @cat@ will -- terminate if you close the handle). -- -- Same as @p |> readInput f@ withRead :: (PipeResult f, NFData b) => Proc a -> (ByteString -> IO b) -> f b withRead p f = p |> readInput f -- | Type used to represent destinations for redirects. @`Truncate` file@ -- is like @> file@ in a shell, and @`Append` file@ is like @>> file@. data Stream = StdOut | StdErr | Truncate ByteString | Append ByteString -- | Shortcut for @`Truncate` "\/dev\/null"@ -- -- >>> echo "Hello" &> devNull devNull :: Stream devNull = Truncate "/dev/null" -- | Type representing a series or pipeline (or both) of shell commands. -- -- @Proc@'s can communicate to each other via @stdin@, @stdout@ and @stderr@ -- and can communicate to Haskell via their parameterised return type, or by -- throwing an exception. newtype Proc a = Proc (Handle -> Handle -> Handle -> IO () -> IO () -> IO a) deriving Functor instance MonadIO Proc where liftIO a = Proc $ \_ _ _ pl pw -> do (pl >> a) `finally` pw -- | The `Semigroup` instance for `Proc` pipes the stdout of one process -- into the stdin of the next. However, consider using `|>` instead which -- behaves when used in an `IO` context. If you use `<>` in an IO monad -- you will be using the `IO` instance of semigroup which is a sequential -- execution. `|>` prevents that error. instance Semigroup (Proc a) where (<>) = (|>) instance (a ~ ()) => Monoid (Proc a) where mempty = Proc $ \_ _ _ pl pw -> pl `finally` pw instance Applicative Proc where pure a = Proc $ \_ _ _ pw pl -> do pw `finally` pl pure a f <*> a = do f' <- f a' <- a pure (f' a') instance Monad Proc where (Proc a) >>= f = Proc $ \i o e pl pw -> do ar <- a i o e pl (pure ()) let Proc f' = f ar f' i o e (pure ()) pw -- | Run's a `Proc` in `IO`. This is usually not required, as most -- commands in Shh are polymorphic in their return type, and work -- just fine in `IO` directly. runProc :: Proc a -> IO a runProc = runProc' stdin stdout stderr -- | Run's a `Proc` in `IO`. Like `runProc`, but you get to choose the handles. -- This is UNSAFE to expose externally, because there are restrictions on what -- the Handle can be. Within shh, we never call `runProc'` with invalid handles, -- so we ignore that corner case (see `hDup`). runProc' :: Handle -> Handle -> Handle -> Proc a -> IO a runProc' i o e (Proc f) = do r <- f i o e (pure ()) (pure ()) -- Evaluate to WHNF to uncover any ResourceVanished exceptions -- that may be hiding in there from `nativeProc`. These should -- not happen under normal circumstances, but we would at least -- like to have the exception thrown ASAP if, for whatever reason, -- it does happen. pure $! r -- | Create a `Proc` from a command and a list of arguments. -- The boolean represents whether we should delegate control-c -- or not. Most uses of @`mkProc'`@ in Shh do not delegate control-c. mkProc' :: Bool -> ByteString -> [ByteString] -> Proc () mkProc' delegate cmd args = Proc $ \i o e pl pw -> do let cmd' = BC8.unpack cmd args' = BC8.unpack <$> args bracket (createProcess_ cmd' (proc cmd' args') { std_in = UseHandle i , std_out = UseHandle o , std_err = UseHandle e , close_fds = True , delegate_ctlc = delegate } ) (\(_,_,_,ph) -> terminateProcess ph) $ \(_,_,_,ph) -> do pl (waitProc cmd args ph `onException` terminateProcess ph) `finally` pw -- | Create a `Proc` from a command and a list of arguments. Does not delegate -- control-c handling. mkProc :: ByteString -> [ByteString] -> Proc () mkProc = mkProc' False -- | Read the stdout of a `Proc`. This captures stdout, so further piping will -- not see anything on the input. -- -- This is strict, so the whole output is read into a `ByteString`. See `withRead` -- for a lazy version that can be used for streaming. readProc :: PipeResult io => Proc a -> io ByteString readProc p = withRead p pure -- | A special `Proc` which captures its stdin and presents it as a `ByteString` -- to Haskell. -- -- >>> printf "Hello" |> md5sum |> capture -- "8b1a9953c4611296a827abf8c47804d7 -\n" capture :: PipeResult io => io ByteString capture = readInput pure -- | Like @'capture'@, except that it @'trim'@s leading and trailing white -- space. -- -- >>> printf "Hello" |> md5sum |> captureTrim -- "8b1a9953c4611296a827abf8c47804d7 -" captureTrim :: PipeResult io => io ByteString captureTrim = readInput (pure . trim) -- | Like @'capture'@, but splits the input using the provided separator. -- -- NB: This is strict. If you want a streaming version, use `readInput` captureSplit :: PipeResult io => ByteString -> io [ByteString] captureSplit s = readInput (pure . fmap fromString . endBy (toString s) . toString) -- | Same as @'captureSplit' "\0"@. captureSplit0 :: PipeResult io => io [ByteString] captureSplit0 = captureSplit "\0" -- | Same as @'captureSplit' "\n"@. captureLines :: PipeResult io => io [ByteString] captureLines = captureSplit "\n" -- | Apply a transformation function to the string before the IO action. withRead' :: (NFData b, PipeResult io) => (ByteString -> a) -> Proc x -> (a -> IO b) -> io b withRead' f p io = withRead p (io . f) -- | Like @'withRead'@ except it splits the string with the provided separator. withReadSplit :: (NFData b, PipeResult io) => ByteString -> Proc a -> ([ByteString] -> IO b) -> io b withReadSplit = withRead' . split -- | Like @'withRead'@ except it splits the string with @'split0'@ first. withReadSplit0 :: (NFData b, PipeResult io) => Proc a -> ([ByteString] -> IO b) -> io b withReadSplit0 = withRead' split0 -- | Like @'withRead'@ except it splits the string with @'lines'@ first. -- -- NB: Please consider using @'withReadSplit0'@ where you can. withReadLines :: (NFData b, PipeResult io) => Proc a -> ([ByteString] -> IO b) -> io b withReadLines = withRead' lines -- | Like @'withRead'@ except it splits the string with @'words'@ first. withReadWords :: (NFData b, PipeResult io) => Proc a -> ([ByteString] -> IO b) -> io b withReadWords = withRead' (map fromString . words . toString) -- | Read and write to a `Proc`. Same as -- @readProc proc <<< input@ readWriteProc :: MonadIO io => Proc a -> ByteString -> io ByteString readWriteProc p input = liftIO $ readProc p <<< input -- | Some as `readWriteProc`. Apply a `Proc` to a `ByteString`. -- -- >> apply md5sum "Hello" -- "8b1a9953c4611296a827abf8c47804d7 -\n" apply :: MonadIO io => Proc a -> ByteString -> io ByteString apply = readWriteProc -- | Flipped, infix version of `writeProc` (>>>) :: PipeResult io => ByteString -> Proc a -> io a (>>>) = flip writeProc -- | Infix version of `writeProc` (<<<) :: PipeResult io => Proc a -> ByteString -> io a (<<<) = writeProc -- | Wait on a given `ProcessHandle`, and throw an exception of -- type `Failure` if its exit code is non-zero (ignoring SIGPIPE) waitProc :: ByteString -> [ByteString] -> ProcessHandle -> IO () waitProc cmd arg ph = waitForProcess ph >>= \case ExitFailure c | fromIntegral c == negate sigPIPE -> pure () | otherwise -> throwIO $ Failure cmd arg c ExitSuccess -> pure () -- | Trim leading and tailing whitespace. trim :: ByteString -> ByteString trim = fromString . dropWhileEnd isSpace . dropWhile isSpace . toString -- | Allow us to catch `Failure` exceptions in `IO` and `Proc` class ProcFailure m where -- | Run a `Proc` action, catching an `Failure` exceptions -- and returning them. catchFailure :: Proc a -> m (Either Failure a) instance ProcFailure Proc where catchFailure (Proc f) = Proc $ \i o e pl pw -> do try $ f i o e pl pw instance ProcFailure IO where catchFailure = runProc . catchFailure -- | Run a `Proc` action, ignoring any `Failure` exceptions. -- This can be used to prevent a process from interrupting a whole pipeline. -- -- >>> false |> (sleep 2 >> echo 1) -- *** Exception: Command `false` failed [exit 1] -- -- >>> (ignoreFailure false) |> (sleep 2 >> echo 1) -- 1 ignoreFailure :: (Functor m, ProcFailure m) => Proc a -> m () ignoreFailure = void . catchFailure -- | Run an `Proc` action returning the return code if an -- exception was thrown, and 0 if it wasn't. catchCode :: (Functor m, ProcFailure m) => Proc a -> m Int catchCode = fmap getCode . catchFailure where getCode (Right _) = 0 getCode (Left f) = failureCode f -- | Like `readProc`, but trim leading and tailing whitespace. readTrim :: (Functor io, PipeResult io) => Proc a -> io ByteString readTrim = fmap trim . readProc -- | A class for things that can be converted to arguments on the command -- line. The default implementation is to use `show`. class ExecArg a where asArg :: a -> [ByteString] default asArg :: Show a => a -> [ByteString] asArg a = [fromString $ show a] -- God, I hate that String is [Char]... asArgFromList :: [a] -> [ByteString] default asArgFromList :: Show a => [a] -> [ByteString] asArgFromList = concatMap asArg -- | The @Char@ and @String@ instances encodes as UTF8 instance ExecArg Char where asArg s = [fromString [s]] asArgFromList s = [fromString s] -- | The @[Char]@/@String@ instance encodes as UTF8 instance ExecArg a => ExecArg [a] where asArg = asArgFromList asArgFromList = concatMap asArg instance ExecArg ByteString where asArg s = [s] instance ExecArg Int instance ExecArg Integer instance ExecArg Word -- | A class for building up a command class ExecArgs a where toArgs :: [ByteString] -> a instance ExecArgs (Proc ()) where toArgs (cmd:args) = mkProc cmd args toArgs _ = error "The impossible happened. How did you construct this?" instance (ExecArg b, ExecArgs a) => ExecArgs (b -> a) where toArgs f i = toArgs $ f ++ asArg i -- | Commands can be executed directly in IO instance ExecArgs (IO ()) where toArgs = runProc . toArgs -- | Force a `()` result. class Unit a instance {-# OVERLAPPING #-} Unit b => Unit (a -> b) instance {-# OVERLAPPABLE #-} a ~ () => Unit (m a) -- | Get all executables on your `$PATH`. pathBins :: IO [FilePath] pathBins = map takeFileName <$> pathBinsAbs -- | Get all uniquely named executables on your `$PATH` as absolute -- file names. The uniqueness is determined by the filename, and not -- the whole path. First one found wins. pathBinsAbs :: IO [FilePath] pathBinsAbs = do pathsVar <- splitOn ":" <$> getEnv "PATH" paths <- filterM Dir.doesDirectoryExist pathsVar findBinsIn paths -- | Get all uniquely named executables from the list of directories. Returns -- a list of absolute file names. findBinsIn :: [FilePath] -> IO [FilePath] findBinsIn paths = do ps <- ordNubOn takeFileName . concat <$> mapM (\d -> fmap (\x -> d++('/':x)) <$> Dir.getDirectoryContents d) paths filterM (tryBool . fmap Dir.executable . Dir.getPermissions) ps where -- TODO: Eventually replace this with nubOrdOn (containers 0.6.0.1 dep) ordNubOn :: Ord b => (a -> b) -> [a] -> [a] ordNubOn f as = map snd . Map.toList . Map.fromListWith const $ zip (map f as) as tryBool :: IO Bool -> IO Bool tryBool a = try a >>= \case Left (SomeException _) -> pure False Right r -> pure r -- | Execute the given command. Further arguments can be passed in. -- -- > exe "ls" "-l" -- -- See also `loadExe` and `loadEnv`. exe :: (Unit a, ExecArgs a, ExecArg str) => str -> a exe s = toArgs (asArg s) -- | Create a function for the executable named loadExe :: ExecReference -> String -> Q [Dec] loadExe ref s = loadExeAs ref s s -- | Specify how executables should be referenced. data ExecReference = Absolute -- ^ Find executables on PATH, but store their absolute path | SearchPath -- ^ Always search on PATH -- | Template Haskell function to create a function from a path that will be -- called. This does not check for executability at compile time. rawExe :: String -> String -> Q [Dec] rawExe fnName executable = do let name = mkName $ fnName impl = valD (varP name) (normalB [| exe executable |]) [] typn = mkName "a" typ = SigD name (ForallT [PlainTV typn] [AppT (ConT ''Unit) (VarT typn), AppT (ConT ''ExecArgs) (VarT typn)] (VarT typn)) i <- impl return $ [typ,i] -- | @$(loadExeAs ref fnName executable)@ defines a function called @fnName@ -- which executes the path in @executable@. If @executable@ is an absolute path -- it is used directly. If it is just an executable name, then it is searched -- for in the PATH environment variable. If @ref@ is @SearchPath@, the short -- name is retained, and your PATH will be searched at runtime. If @ref@ -- is @Absolute@, a executable name will be turned into an absolute path, which -- will be used at runtime. loadExeAs :: ExecReference -> String -> String -> Q [Dec] loadExeAs ref fnName executable = do -- TODO: Can we place haddock markup in TH generated functions. -- TODO: Can we place the man page for each function in there xD -- https://ghc.haskell.org/trac/ghc/ticket/5467 runIO (Dir.findExecutable executable) >>= \case Nothing -> error $ "Attempted to load '" ++ executable ++ "', but it is not executable" Just absExe -> rawExe fnName (case ref of { Absolute -> absExe; SearchPath -> executable }) -- | Takes a string, and makes a Haskell identifier out of it. If the string -- is a path, the filename portion is used. The exact transformation is that -- alphanumeric characters are unchanged, @-@ becomes @_@, and @'@ is used to -- escape all other characters. @_@ becomes @'_@, @.@ becomes @''@ and -- anthing else is becomes a hex encoded number surrounded by @'@ characters. -- -- Justification for changing @-@ to @_@ is that @-@ appears far more commonly -- in executable names than @_@ does, and so we give it the more ergonomic -- encoding. -- -- >>> encodeIdentifier "nix-shell" -- "nix_shell" -- -- >>> encodeIdentifier "R" -- "_R" -- -- >>> encodeIdentifier "x86_64-unknown-linux-gnu-gcc" -- "x86'_64_unknown_linux_gnu_gcc" -- -- >>> encodeIdentifier "release.sh" -- "release''sh" encodeIdentifier :: String -> String encodeIdentifier ident = let fixBody :: String -> String fixBody (c:cs) | isAlphaNum c = c : fixBody cs | c == '-' = '_' : fixBody cs | c == '_' = '\'' : '_' : fixBody cs | c == '.' = '\'' : '\'' : fixBody cs | otherwise = printf "'%x'%s" (ord c) (fixBody cs) fixBody [] = [] fixStart :: String -> String fixStart s@(c : _) | isLower c = s | otherwise = '_' : s fixStart [] = [] i = fixStart $ fixBody $ takeFileName ident -- Includes cd, which has to be a built-in reserved = [ "import", "if", "else", "then", "do", "in", "let", "type" , "as", "case", "of", "class", "data", "default", "deriving" , "instance", "forall", "foreign", "hiding", "infix", "infixl" , "infixr", "mdo", "module", "newtype", "proc", "qualified" , "rec", "where", "cd"] in if i `elem` reserved then i ++ "_" else i -- | Scans your '$PATH' environment variable and creates a function for each -- executable found. Binaries that would not create valid Haskell identifiers -- are encoded using the @'encodeIdentifier'@ function. loadEnv :: ExecReference -> Q [Dec] loadEnv ref = loadAnnotatedEnv ref encodeIdentifier -- | Test to see if an executable can be found either on the $PATH or absolute. checkExecutable :: FilePath -> IO Bool checkExecutable = fmap isJust . Dir.findExecutable -- | Load the given executables into the program, checking their executability -- and creating a function @missingExecutables@ to do a runtime check for their -- availability. Uses the @'encodeIdentifier'@ function to create function -- names. load :: ExecReference -> [FilePath] -> Q [Dec] load ref = loadAnnotated ref encodeIdentifier -- | Same as `load`, but allows you to modify the function names. loadAnnotated :: ExecReference -> (String -> String) -> [FilePath] -> Q [Dec] loadAnnotated ref f bins = do let pairs = zip (map f bins) bins ds <- fmap join $ mapM (uncurry (loadExeAs ref)) pairs d <- valD (varP (mkName "missingExecutables")) (normalB [| filterM (fmap not . checkExecutable) bins |]) [] pure (d:ds) -- | Like `loadEnv`, but allows you to modify the function name that would -- be generated. loadAnnotatedEnv :: ExecReference -> (String -> String) -> Q [Dec] loadAnnotatedEnv ref f = do bins <- runIO $ case ref of Absolute -> pathBinsAbs SearchPath -> pathBins i <- forM bins $ \bin -> do rawExe (f $ takeFileName bin) bin pure (concat i) -- | Split a string separated by the provided separator. Trailing separators -- are ignored, and do not produce an empty string. Compatible with the -- output of most CLI programs, such as @find -print0@. -- -- >>> split "\n" "a\nb\n" -- ["a","b"] -- -- >>> split "\n" "a\nb" -- ["a","b"] split :: ByteString -> ByteString -> [ByteString] split s str = fmap fromString $ endBy (toString s) (toString str) -- | Load executables from the given directories loadFromDirs :: [FilePath] -> Q [Dec] loadFromDirs ps = loadAnnotatedFromDirs ps encodeIdentifier -- | Load executables from the given directories appended with @"/bin"@. -- -- Useful for use with Nix. loadFromBins :: [FilePath] -> Q [Dec] loadFromBins = loadFromDirs . fmap ( "bin") -- | Load executables from the given dirs, applying the given transformation -- to the filenames. loadAnnotatedFromDirs :: [FilePath] -> (String -> String) -> Q [Dec] loadAnnotatedFromDirs ps f = do bins <- runIO $ findBinsIn ps i <- forM bins $ \bin -> do rawExe (f $ takeFileName bin) bin pure (concat i) -- | Function that splits '\0' separated list of strings. Useful in conjunction -- with @find . "-print0"@. split0 :: ByteString -> [ByteString] split0 = split "\0" -- | A convenience function for reading in a @"\\NUL"@ separated list of -- strings. This is commonly used when dealing with paths. -- -- > readSplit0 $ find "-print0" readSplit0 :: Proc () -> IO [ByteString] readSplit0 p = withReadSplit0 p pure -- | A convenience function for reading the output lines of a `Proc`. -- -- Note: Please consider using @'readSplit0'@ instead if you can. readLines :: Proc () -> IO [ByteString] readLines p = withReadLines p pure -- | Read output into a list of words readWords :: Proc () -> IO [ByteString] readWords p = withReadWords p pure -- | Like `readProc`, but attempts to `Prelude.read` the result. readAuto :: Read a => Proc () -> IO a readAuto p = read . toString <$> readProc p -- | Mimics the shell builtin "cd". cd' :: FilePath -> IO () cd' p = do Dir.setCurrentDirectory p a <- Dir.getCurrentDirectory setEnv "PWD" a -- | Helper class for variable number of arguments to @cd@ builtin. class Cd a where -- | Mimics the shell builtin "cd". Be careful using this function -- in a program, as it doesn't play well with multiple threads. Best -- to just use it in an interactive shell or for very simple -- transliterations of shell scripts. cd :: a instance (io ~ IO ()) => Cd io where cd = getEnv "HOME" >>= cd' instance {-# OVERLAPS #-} (io ~ IO (), path ~ FilePath) => Cd (path -> io) where cd = cd' -- | @xargs1 n f@ runs @f@ for each item in the input separated by @n@. Similar -- to the standard @xargs@ utility, but you get to choose the separator, and it -- only does one argument per command. Compare the following two lines, which -- do the same thing. -- -- >>> printf "a\\0b" |> xargs "--null" "-L1" "echo" |> cat -- a -- b -- >>> printf "a\\0b" |> xargs1 "\0" echo |> cat -- a -- b -- -- One benefit of this method over the standard @xargs@ is that we can run -- Haskell functions as well. -- -- >>> yes |> head "-n" 5 |> xargs1 "\n" (const $ pure $ Sum 1) -- Sum {getSum = 5} xargs1 :: (NFData a, Monoid a) => ByteString -> (ByteString -> Proc a) -> Proc a xargs1 n f = readInputSplitP n (fmap mconcat . mapM f) -- | Simple @`Proc`@ that reads its input and can react to the output by -- calling other @`Proc`@'s which can write something to its stdout. -- The internal @`Proc`@ is given @/dev/null@ as its input. readInputP :: (NFData a, PipeResult io) => (ByteString -> Proc a) -> io a readInputP f = nativeProc $ \i o e -> do s <- hGetContents i withNullInput $ \i' -> liftIO $ runProc' i' o e (f s) -- | Like @`readInputP`@, but splits the input. readInputSplitP :: (NFData a, PipeResult io) => ByteString -> ([ByteString] -> Proc a) -> io a readInputSplitP s f = readInputP (f . split s) -- | Like @`readInputP`@, but splits the input on 0 bytes. readInputSplit0P :: (NFData a, PipeResult io) => ([ByteString] -> Proc a) -> io a readInputSplit0P = readInputSplitP "\0" -- | Like @`readInputP`@, but splits the input on new lines. readInputLinesP :: (NFData a, PipeResult io) => ([ByteString] -> Proc a) -> io a readInputLinesP = readInputSplitP "\n" -- | Create a null file handle. withNullInput :: (Handle -> IO a) -> IO a withNullInput = withFile "/dev/null" ReadMode -- | Bracket a @`hDup`@ withDuplicate :: Handle -> (Handle -> IO a) -> IO a withDuplicate h f = bracket (hDup h) hClose f -- | Bracket three @`hDup`@s withDuplicates :: Handle -> Handle -> Handle -> (Handle -> Handle -> Handle -> IO a) -> IO a withDuplicates a b c f = withDuplicate a $ \a' -> withDuplicate b $ \b' -> withDuplicate c $ \c' -> f a' b' c' -- | Bracket two @`hDup`@s and provide a null input handle. withDuplicateNullInput :: Handle -> Handle -> (Handle -> Handle -> Handle -> IO a) -> IO a withDuplicateNullInput a b f = do withNullInput $ \i -> do withDuplicate a $ \a' -> withDuplicate b $ \b' -> f i a' b' -- | Duplicate a @`Handle`@ without trying to flush buffers. Only works on @`FileHandle`@s. -- -- hDuplicate tries to "flush" read buffers by seeking backwards, which doesn't -- work for streams/pipes. Since we are simulating a @fork + exec@ in @`nativeProc`@, -- losing the buffers is actually the expected behaviour. (System.Process doesn't -- attempt to flush the buffers). -- -- NB: An alternate solution that we could implement (even for System.Process forks) -- is to create a fresh pipe and spawn an async task to forward buffered content -- from the original handle if there is something in the buffer. My concern would -- be that it might be a performance hit that people aren't expecting. -- -- Code basically copied from -- http://hackage.haskell.org/package/base-4.12.0.0/docs/src/GHC.IO.Handle.html#hDuplicate -- with minor modifications. hDup :: Handle -> IO Handle hDup h@(FileHandle path m) = do withHandle_' "hDup" h m $ \h_ -> dupHandleShh path h Nothing h_ (Just handleFinalizer) hDup h@(DuplexHandle path r w) = do (FileHandle _ write_m) <- withHandle_' "hDup" h w $ \h_ -> dupHandleShh path h Nothing h_ (Just handleFinalizer) (FileHandle _ read_m) <- withHandle_' "hDup" h r $ \h_ -> dupHandleShh path h (Just write_m) h_ Nothing return (DuplexHandle path read_m write_m) -- | Helper function for duplicating a Handle dupHandleShh :: FilePath -> Handle -> Maybe (MVar Handle__) -> Handle__ -> Maybe HandleFinalizer -> IO Handle dupHandleShh filepath h other_side h_@Handle__{..} mb_finalizer = do case other_side of Nothing -> do new_dev <- IODevice.dup haDevice dupHandleShh_ new_dev filepath other_side h_ mb_finalizer Just r -> withHandle_' "dupHandleShh" h r $ \Handle__{haDevice=dev} -> do dupHandleShh_ dev filepath other_side h_ mb_finalizer -- | Helper function for duplicating a Handle dupHandleShh_ :: (IODevice dev, BufferedIO dev, Typeable dev) => dev -> FilePath -> Maybe (MVar Handle__) -> Handle__ -> Maybe HandleFinalizer -> IO Handle dupHandleShh_ new_dev filepath other_side Handle__{..} mb_finalizer = do -- XXX wrong! mb_codec <- if isJust haEncoder then fmap Just getLocaleEncoding else return Nothing mkHandle new_dev filepath haType True{-buffered-} mb_codec NewlineMode { inputNL = haInputNL, outputNL = haOutputNL } mb_finalizer other_side