-- | Sparse Matrix. -- -- Copyright: (c) 2009 University of Kansas -- License: BSD3 -- -- Maintainer: Andy Gill -- Stability: unstable -- Portability: ghc {-# LANGUAGE TypeFamilies, RankNTypes, FlexibleInstances, UndecidableInstances, MultiParamTypeClasses #-} module Data.Sized.Sparse.Matrix where import Data.Sized.Ix as X import qualified Data.Sized.Matrix as M import qualified Data.Map as Map import Data.Map (Map) import qualified Data.Set as Set import Data.Set (Set) import Control.Applicative data Matrix ix a = Matrix a (Map ix a) instance Functor (Matrix ix) where fmap f (Matrix d mp) = Matrix (f d) (fmap f mp) -- 'fromAssocList' generates a sparse matrix. fromAssocList :: (Ord i, Eq a) => a -> [(i,a)] -> Matrix i a fromAssocList d xs = Matrix d (Map.fromList [ (i,a) | (i,a) <- xs, a /= d ]) toAssocList :: (Matrix i a) -> (a,[(i,a)]) toAssocList (Matrix d mp) = (d,Map.toList mp) -- | '!' looks up an element in the sparse matrix. If the element is not found -- in the sparse matrix, '!' returns the default value. (!) :: (Ord ix) => Matrix ix a -> ix -> a (!) (Matrix d sm) id = Map.findWithDefault d id sm fill :: (Size ix) => Matrix ix a -> M.Matrix ix a fill sm = M.forAll $ \ i -> sm ! i -- Might be just internal, because nothing else leaks defaults. prune :: (Size ix, Eq a) => a -> Matrix ix a -> Matrix ix a prune d sm@(Matrix d' m) | d == d' = Matrix d (Map.filter (/= d) m) | otherwise = sparse d (fill sm) -- it might be possible to do better; think about it -- | Make a Matrix sparse, with a default 'zero' value. sparse :: (Size ix, Eq a) => a -> M.Matrix ix a -> Matrix ix a sparse d other = Matrix d (Map.fromList [ (i,v) | (i,v) <- M.assocs other, v /= d ]) foldb1 f [x] = x foldb1 f xs = foldb1 f (take len_before xs) `f` foldb1 f (drop len_before xs) where len = length xs len_before = len `div` 2 mm :: (Size m, Size n, Size m', Size n', n ~ m', Num a) => Matrix (m,n) a -> Matrix (m',n') a -> Matrix (m,n') a mm s1 s2 = Matrix 0 mp where mp = Map.fromList [ ((x,y),v) | (x,y) <- X.all , let s = (rs M.! x) `Set.intersection` (cs M.! y) , not (Set.null s) , let v = foldb1 (+) [ s1 ! (x,k) * s2 ! (k,y) | k <- Set.toList s ] , v /= 0 ] sm1@(Matrix _ mp1) = prune 0 s1 sm2@(Matrix _ mp2) = prune 0 s2 rs = rowSets (Map.keysSet mp1) cs = columnSets (Map.keysSet mp2) rowSets :: (Size a, Ord b) => Set (a,b) -> M.Matrix a (Set b) rowSets set = M.accum f (pure Set.empty) (Set.toList set) where f set e = Set.insert e set columnSets :: (Size b, Ord a) => Set (a,b) -> M.Matrix b (Set a) columnSets = rowSets . Set.map (\ (a,b) -> (b,a)) instance (Size i) => Applicative (Matrix i) where pure a = Matrix a (Map.empty) sm1@(Matrix d1 m1) <*> sm2@(Matrix d2 m2) = Matrix (d1 d2) (Map.fromList [ (k,(sm1 ! k) (sm2 ! k)) | k <- Set.toList keys ]) where keys = Map.keysSet m1 `Set.union` Map.keysSet m2 instance (Show a, Size ix,Size (Row ix), Size (Column ix)) => Show (Matrix ix a) where show m = show (fill m) transpose :: (Size x, Size y, Eq a) => Matrix (x,y) a -> Matrix (y,x) a transpose (Matrix d m) = Matrix d (Map.fromList [ ((y,x),a) | ((x,y),a) <- Map.assocs m ]) m1 = M.matrix [1..6] :: M.Matrix (X2,X3) Int m2 = M.matrix [1..12] :: M.Matrix (X3,X4) Int m3 = m1 `M.mm` m2 m4 = M.identity :: M.Matrix (X200,X200) Int zipWith :: (Size x) => (a -> b -> c) -> Matrix x a -> Matrix x b -> Matrix x c zipWith f m1 m2 = pure f <*> m1 <*> m2