module Skulk.Deep where
import Control.Applicative((<$>),Applicative,liftA,pure,(<*>))
import Control.Monad(liftM,join)
import Data.Traversable(Traversable, sequenceA)
newtype Deep a b c = Deep { expose :: a (b c) } deriving (Show, Eq)
wrap :: (Monad a) => b c -> Deep a b c
wrap = Deep . return
inject :: (Functor a, Monad b) => a c -> Deep a b c
inject = Deep . fmap return
eject :: (Functor a) => (b c -> c) -> Deep a b c -> a c
eject f = fmap f . expose
instance (Functor a, Functor b) => Functor (Deep a b) where
f `fmap` (Deep x) = Deep (f <$$> x)
#if __GLASGOW_HASKELL__ < 710
instance (Applicative a, Monad a, Applicative b) => Applicative (Deep a b) where
#else
instance (Monad a, Applicative b) => Applicative (Deep a b) where
#endif
pure = Deep . pure . pure
(Deep abf) <*> (Deep abx) = Deep $ do
bf <- abf
bx <- abx
let by = bf <*> bx
return by
#if __GLASGOW_HASKELL__ < 710
instance (Applicative a, Monad a, Monad b, Traversable b) => Monad (Deep a b) where
#else
instance (Monad a, Monad b, Traversable b) => Monad (Deep a b) where
#endif
return = Deep . return . return
fail = Deep . return . fail
(Deep abx) >>= f = Deep $ do
bx <- abx
let baby = expose . f <$> bx
let abby = sequenceA baby
let aby = join <$> abby
aby
reduceABA :: (Applicative a, Monad a, Traversable b) => a (b (a x)) -> a (b x)
reduceABA x = join (sequenceA <$> x)
reduceBAB :: (Applicative a, Traversable b, Monad b) => b (a (b x)) -> a (b x)
reduceBAB x = join <$> sequenceA x
reduceABAB :: (Applicative a, Monad a, Traversable b, Monad b) => a (b (a (b x))) -> a (b x)
reduceABAB x = join <$> reduceABA x
reduceBABA :: (Applicative a, Monad a, Traversable b, Monad b) => b (a (b (a x))) -> a (b x)
reduceBABA = reduceABA . reduceBAB
infixl 4 <$$>
(<$$>) :: (Functor a, Functor b) => (x -> y) -> a (b x) -> a (b y)
f <$$> abx = (\bx -> f <$> bx) <$> abx
infixl 1 >>>=
(>>>=) :: (Applicative a, Monad a, Traversable b, Monad b) => a (b x) -> (x -> a (b y)) -> a (b y)
x >>>= f = reduceABAB (f <$$> x)
infixl 1 >>==
(>>==) :: (Functor a, Functor b, Monad b) => a (b x) -> (x -> b y) -> a (b y)
x >>== f = join <$> (f <$$> x)
infixl 1 >=>=
(>=>=) :: (Applicative a, Monad a, Traversable b) => a (b x) -> (x -> a y) -> a (b y)
x >=>= f = reduceABA (f <$$> x)