{-# LANGUAGE GADTs #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleInstances #-} module Data.Predicate where import Prelude hiding (and, or) import Control.Applicative hiding (Const) import Control.Monad.State.Strict import Data.Predicate.Env (Env) import qualified Data.Predicate.Env as E -- | 'Delta' is a measure of distance. It is (optionally) -- used in predicates that evaluate to 'T' but not uniquely so, i.e. -- different evaluations of 'T' are possible and they may have a different -- \"fitness\". -- -- An example is content-negotiation. A HTTP request may specify -- a preference list of various media-types. A predicate matching one -- specific media-type evaluates to 'T', but other media-types may match -- even better. To represent this ambivalence, the predicate will include -- a delta value which can be used to decide which of the matching -- predicates should be preferred. type Delta = Double -- | A 'Bool'-like type where each branch 'T'rue or 'F'alse carries -- some meta-data which is threaded through 'Predicate' evaluation. data Boolean f t = F f -- ^ logical False with some meta-data | T Delta t -- ^ logical True with some meta-data deriving (Eq, Show) -- | The 'Predicate' class declares the function 'apply' which -- evaluates the predicate against some value, returning a value -- of type 'Boolean'. -- Besides being parameterised over predicate type and predicate -- parameter, the class is also parameterised over the actual types -- of T's and F's meta-data. class Predicate p a where type FVal p type TVal p apply :: p -> a -> State Env (Boolean (FVal p) (TVal p)) -- | A 'Predicate' instance which always returns 'T' with -- the given value as T's meta-data. data Const f t where Const :: t -> Const f t instance Predicate (Const f t) a where type FVal (Const f t) = f type TVal (Const f t) = t apply (Const a) _ = return (T 0 a) instance Show t => Show (Const f t) where show (Const a) = "Const " ++ show a -- | A 'Predicate' instance which always returns 'F' with -- the given value as F's meta-data. data Fail f t where Fail :: f -> Fail f t instance Predicate (Fail f t) a where type FVal (Fail f t) = f type TVal (Fail f t) = t apply (Fail a) _ = return (F a) instance Show f => Show (Fail f t) where show (Fail a) = "Fail " ++ show a -- | A 'Predicate' instance corresponding to the logical -- OR connective of two 'Predicate's. It requires the -- meta-data of each 'T'rue branch to be of the same type. -- -- If both arguments evaluate to 'T' the one with the -- smaller 'Delta' will be preferred, or--if equal--the -- left-hand argument. data a :|: b = a :|: b instance (Predicate a c, Predicate b c, TVal a ~ TVal b, FVal a ~ FVal b) => Predicate (a :|: b) c where type FVal (a :|: b) = FVal a type TVal (a :|: b) = TVal a apply (a :|: b) r = or <$> apply a r <*> apply b r where or x@(T d0 _) y@(T d1 _) = if d1 < d0 then y else x or x@(T _ _) (F _) = x or (F _) x@(T _ _) = x or (F _) x@(F _) = x instance (Show a, Show b) => Show (a :|: b) where show (a :|: b) = "(" ++ show a ++ " | " ++ show b ++ ")" type a :+: b = Either a b -- | A 'Predicate' instance corresponding to the logical -- OR connective of two 'Predicate's. The meta-data of -- each 'T'rue branch can be of different types. -- -- If both arguments evaluate to 'T' the one with the -- smaller 'Delta' will be preferred, or--if equal--the -- left-hand argument. data a :||: b = a :||: b instance (Predicate a c, Predicate b c, FVal a ~ FVal b) => Predicate (a :||: b) c where type FVal (a :||: b) = FVal a type TVal (a :||: b) = TVal a :+: TVal b apply (a :||: b) r = or <$> apply a r <*> apply b r where or (T d0 t0) (T d1 t1) = if d1 < d0 then T d1 (Right t1) else T d0 (Left t0) or (T d t) (F _) = T d (Left t) or (F _) (T d t) = T d (Right t) or (F _) (F f) = F f instance (Show a, Show b) => Show (a :||: b) where show (a :||: b) = "(" ++ show a ++ " || " ++ show b ++ ")" -- | Data-type used for tupling-up the results of ':&:'. data a :*: b = a :*: b deriving (Eq, Show) -- | A 'Predicate' instance corresponding to the logical -- AND connective of two 'Predicate's. data a :&: b = a :&: b instance (Predicate a c, Predicate b c, FVal a ~ FVal b) => Predicate (a :&: b) c where type FVal (a :&: b) = FVal a type TVal (a :&: b) = TVal a :*: TVal b apply (a :&: b) r = and <$> apply a r <*> apply b r where and (T d x) (T w y) = T (d + w) (x :*: y) and (T _ _) (F f) = F f and (F f) _ = F f instance (Show a, Show b) => Show (a :&: b) where show (a :&: b) = "(" ++ show a ++ " & " ++ show b ++ ")" -- | Evaluate the given predicate 'p' against the given value 'a'. eval :: Predicate p a => p -> a -> Boolean (FVal p) (TVal p) eval p a = evalState (apply p a) E.empty -- | The 'with' function will invoke the given function only if the predicate 'p' -- applied to the test value 'a' evaluates to 'T'. with :: (Monad m, Predicate p a) => p -> a -> (TVal p -> m ()) -> m () with p a f = case eval p a of T _ x -> f x _ -> return ()