{-# LANGUAGE GeneralizedNewtypeDeriving, ScopedTypeVariables, DoRec, GADTs #-} {-# OPTIONS_GHC -fno-cse -fno-full-laziness #-} module FRP.Sodium.Impl where -- Note: the 'full-laziness' optimization messes up finalizers, so we're -- disabling it. It'd be nice to find a really robust solution to this. -- -fno-cse just in case, since we're using unsafePerformIO. import Control.Applicative import Control.Concurrent import Control.Concurrent.Chan import Control.Concurrent.MVar import Control.Exception (evaluate) import Control.Monad import Control.Monad.State.Strict import Control.Monad.Trans import Data.Int import Data.IORef import Data.Map (Map) import qualified Data.Map as M import Data.Maybe import Data.Set (Set) import qualified Data.Set as S import Data.Sequence (Seq, (|>)) import qualified Data.Sequence as Seq import Data.Typeable import GHC.Exts import System.Mem.Weak import System.IO.Unsafe import Unsafe.Coerce type ID = Int64 data ReactiveState p = ReactiveState { asQueue1 :: Seq (Reactive p ()), asQueue2 :: Map Int64 (Reactive p ()), asFinal :: IO () } {- newtype Reactive p a = Reactive (StateT (ReactiveState p) IO a) deriving (Functor, Applicative, Monad, MonadFix) -} data Reactive p a where Reactive :: StateT (ReactiveState p) IO a -> Reactive p a instance Functor (Reactive p) where fmap f rm = Reactive (fmap f (unReactive rm)) unReactive :: Reactive p a -> StateT (ReactiveState p) IO a unReactive (Reactive m) = m instance Applicative (Reactive p) where pure a = Reactive $ return a rf <*> rm = Reactive $ unReactive rf <*> unReactive rm instance Monad (Reactive p) where return a = Reactive $ return a rma >>= kmb = Reactive $ do a <- unReactive rma unReactive (kmb a) instance MonadFix (Reactive p) where mfix f = Reactive $ mfix $ \a -> unReactive (f a) ioReactive :: IO a -> Reactive p a ioReactive io = Reactive $ liftIO io newtype NodeID = NodeID Int deriving (Eq, Ord, Enum) data Partition p = Partition { paRun :: Reactive p () -> IO () -> IO (), paNextNodeID :: IORef NodeID } -- | Queue the specified atomic to run at the end of the priority 1 queue schedulePriority1 :: Reactive p () -> Reactive p () schedulePriority1 task = Reactive $ modify $ \as -> as { asQueue1 = asQueue1 as |> task } -- | Queue the specified atomic to run at the end of the priority 2 queue schedulePriority2 :: Int64 -> Reactive p () -> Reactive p () schedulePriority2 priority task = Reactive $ modify $ \as -> as { asQueue2 = M.alter (\mOldTask -> Just $ case mOldTask of Just oldTask -> oldTask >> task Nothing -> task) priority (asQueue2 as) } onFinal :: IO () -> Reactive p () onFinal task = Reactive $ modify $ \as -> as { asFinal = asFinal as >> task } partitionRegistry :: MVar (Map String Any) {-# NOINLINE partitionRegistry #-} partitionRegistry = unsafePerformIO $ newMVar M.empty -- | Get the globally unique partition handle for this partition type. partition :: forall p . Typeable p => IO (Partition p) partition = do let typ = show $ typeOf (undefined :: p) modifyMVar partitionRegistry $ \reg -> case M.lookup typ reg of Just part -> return (reg, unsafeCoerce part) Nothing -> do part <- createPartition return (M.insert typ (unsafeCoerce part) reg, part) createPartition :: IO (Partition p) createPartition = do ch <- newChan forkIO $ forever $ do (task, onCompletion) <- readChan ch let loop = do queue1 <- gets asQueue1 if not $ Seq.null queue1 then do let Reactive task = Seq.index queue1 0 modify $ \as -> as { asQueue1 = Seq.drop 1 queue1 } task loop else do queue2 <- gets asQueue2 if not $ M.null queue2 then do let (k, Reactive task) = M.findMin queue2 modify $ \as -> as { asQueue2 = M.delete k queue2 } task loop else do final <- gets asFinal liftIO final return () runStateT loop $ ReactiveState { asQueue1 = Seq.singleton task, asQueue2 = M.empty, asFinal = return () } onCompletion nextNodeIDRef <- newIORef (NodeID 0) return $ Partition { paRun = \task onCompletion -> writeChan ch (task, onCompletion), paNextNodeID = nextNodeIDRef } -- | Execute the specified 'Reactive' within a new transaction, firing it off without -- waiting for it to complete. It will be queued for executing on the FRP thread -- for the selected partition. -- -- State changes to 'hold' values occur after processing of the transaction is complete. asynchronously :: Typeable p => Reactive p () -> IO () asynchronously task = do part <- partition paRun part task (return ()) -- | Execute the specified 'Reactive' within a new transaction, blocking the caller -- until all resulting processing is complete and all callbacks have been called. -- -- State changes to 'hold' values occur after processing of the transaction is complete. synchronously :: Typeable p => Reactive p a -> IO a synchronously task = do mvOutput <- newEmptyMVar mvCompleted <- newEmptyMVar part <- partition paRun part (task >>= ioReactive . putMVar mvOutput) (putMVar mvCompleted ()) takeMVar mvCompleted takeMVar mvOutput data Listen p a = Listen { runListen_ :: Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ()) } runListen :: Listen p a -> Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ()) {-# NOINLINE runListen #-} runListen l mv handle = do o <- runListen_ l mv handle _ <- ioReactive $ evaluate l return o -- | A stream of events. The individual firings of events are called \'event occurrences\'. data Event p a = Event { -- Must be data not newtype, because we need to attach finalizers to it -- | Listen for event occurrences on this event, to be handled by the specified -- handler. The returned action is used to unregister the listener. getListenRaw :: Reactive p (Listen p a), evCacheRef :: IORef (Maybe (Listen p a)) } -- | An event that never fires. never :: Event p a never = Event { getListenRaw = return $ Listen $ \_ _ -> return (return ()), evCacheRef = unsafePerformIO $ newIORef Nothing } -- | Unwrap an event's listener machinery. getListen :: Event p a -> Reactive p (Listen p a) getListen (Event getLRaw cacheRef) = do mL <- ioReactive $ readIORef cacheRef case mL of Just l -> return l Nothing -> do l <- getLRaw ioReactive $ writeIORef cacheRef (Just l) return l -- | Listen for firings of this event. The returned @IO ()@ is an IO action -- that unregisters the listener. This is the observer pattern. linkedListen :: Event p a -> Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ()) linkedListen ev mMvTarget handle = do l <- getListen ev runListen l mMvTarget handle -- | Listen for firings of this event. The returned @IO ()@ is an IO action -- that unregisters the listener. This is the observer pattern. listen :: Event p a -> (a -> Reactive p ()) -> Reactive p (IO ()) listen ev handle = linkedListen ev Nothing handle -- | Variant of 'listen' that takes an IO action. listenIO :: Event p a -> (a -> IO ()) -> Reactive p (IO ()) listenIO ev handle = listen ev (ioReactive . handle) data Observer p a = Observer { obNextID :: ID, obListeners :: Map ID (a -> Reactive p ()), obFirings :: [a] } data Node p = Node { noID :: NodeID, noSerial :: Int64, noListeners :: Map ID (MVar (Node p)) } newNode :: forall p . Typeable p => IO (MVar (Node p)) newNode = do part <- partition :: IO (Partition p) nodeID <- readIORef (paNextNodeID part) modifyIORef (paNextNodeID part) succ newMVar (Node nodeID 0 M.empty) wrap :: (Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ())) -> IO (Listen p a) {-# NOINLINE wrap #-} wrap l = return (Listen l) touch :: Listen p a -> IO () {-# NOINLINE touch #-} touch l = evaluate l >> return () linkNode :: MVar (Node p) -> ID -> MVar (Node p) -> IO () linkNode mvNode iD mvTarget = do no <- readMVar mvNode ensureBiggerThan S.empty mvTarget (noSerial no) modifyMVar_ mvNode $ \no -> return $ no { noListeners = M.insert iD mvTarget (noListeners no) } ensureBiggerThan :: Set NodeID -> MVar (Node p) -> Int64 -> IO () ensureBiggerThan visited mvNode limit = do no <- readMVar mvNode if noID no `S.member` visited || noSerial no > limit then return () else do let newSerial = succ limit --putStrLn $ show (noSerial no) ++ " -> " ++ show newSerial modifyMVar_ mvNode $ \no -> return $ no { noSerial = newSerial } forM_ (M.elems . noListeners $ no) $ \mvTarget -> do ensureBiggerThan (S.insert (noID no) visited) mvTarget newSerial unlinkNode :: MVar (Node p) -> ID -> IO () unlinkNode mvNode iD = do modifyMVar_ mvNode $ \no -> return $ no { noListeners = M.delete iD (noListeners no) } -- | Returns a 'Listen' for registering listeners, and a push action for pushing -- a value into the event. newSink :: forall p a . Typeable p => IO (Listen p a, a -> Reactive p (), MVar (Node p)) newSink = do mvNode <- newNode mvObs <- newMVar (Observer 0 M.empty []) cacheRef <- newIORef Nothing rec let l mMvTarget handle = do (firings, unlisten, iD) <- ioReactive $ modifyMVar mvObs $ \ob -> return $ let iD = obNextID ob handle' a = handle a >> ioReactive (touch listen) ob' = ob { obNextID = succ iD, obListeners = M.insert iD handle' (obListeners ob) } unlisten = do modifyMVar_ mvObs $ \ob -> return $ ob { obListeners = M.delete iD (obListeners ob) } unlinkNode mvNode iD return () in (ob', (reverse . obFirings $ ob, unlisten, iD)) case mMvTarget of Just mvTarget -> ioReactive $ linkNode mvNode iD mvTarget Nothing -> return () mapM_ handle firings return unlisten listen <- wrap l -- defeat optimizer on ghc-7.0.4 let push a = do ob <- ioReactive $ modifyMVar mvObs $ \ob -> return $ (ob { obFirings = a : obFirings ob }, ob) -- If this is the first firing... when (null (obFirings ob)) $ onFinal $ do modifyMVar_ mvObs $ \ob -> return $ ob { obFirings = [] } let seqa = seq a a mapM_ ($ seqa) (M.elems . obListeners $ ob) return (listen, push, mvNode) -- | Returns an event, and a push action for pushing a value into the event. newEventLinked :: Typeable p => IO (Event p a, a -> Reactive p (), MVar (Node p)) newEventLinked = do (listen, push, mvNode) <- newSink cacheRef <- newIORef Nothing let ev = Event { getListenRaw = return listen, evCacheRef = cacheRef } return (ev, push, mvNode) -- | Returns an event, and a push action for pushing a value into the event. newEvent :: Typeable p => IO (Event p a, a -> Reactive p ()) newEvent = do (ev, push, _) <- newEventLinked return (ev, push) instance Functor (Event p) where f `fmap` (Event getListen cacheRef) = Event getListen' cacheRef where cacheRef = unsafePerformIO $ newIORef Nothing getListen' = do return $ Listen $ \mMvNode handle -> do l <- getListen runListen l mMvNode (handle . f) -- | Merge two streams of events of the same type. merge :: Typeable p => Event p a -> Event p a -> Event p a merge ea eb = Event gl cacheRef where cacheRef = unsafePerformIO $ newIORef Nothing gl = do l1 <- getListen ea l2 <- getListen eb (l, push, mvNode) <- ioReactive newSink unlistener1 <- unlistenize $ runListen l1 (Just mvNode) push unlistener2 <- unlistenize $ runListen l2 (Just mvNode) push (finalerize unlistener1 <=< finalerize unlistener2) l -- | Unwrap Just values, and discard event occurrences with Nothing values. justE :: Typeable p => Event p (Maybe a) -> Event p a justE ema = Event gl cacheRef where cacheRef = unsafePerformIO $ newIORef Nothing gl = do (l', push, mvNode) <- ioReactive newSink l <- getListen ema unlistener <- unlistenize $ runListen l (Just mvNode) $ \ma -> case ma of Just a -> push a Nothing -> return () finalerize unlistener l' -- | Only keep event occurrences for which the predicate is true. filterE :: Typeable p => (a -> Bool) -> Event p a -> Event p a filterE pred = justE . ((\a -> if pred a then Just a else Nothing) <$>) -- | A time-varying value, American spelling. type Behavior p a = Behaviour p a -- | A time-varying value, British spelling. data Behaviour p a = Behaviour { -- | Internal: Extract the underlyingEvent event for this behaviour. underlyingEvent :: Event p a, -- | Obtain the current value of a behaviour. sample :: Reactive p a } instance Functor (Behaviour p) where f `fmap` Behaviour underlyingEvent sample = Behaviour (f `fmap` underlyingEvent) (f `fmap` sample) constant :: a -> Behaviour p a constant a = Behaviour { underlyingEvent = never, sample = return a } data BehaviourState p a = BehaviourState { bsCurrent :: a, bsUpdate :: Maybe a } -- | Add a finalizer to an event. finalizeEvent :: Event p a -> IO () -> Event p a {-# NOINLINE finalizeEvent #-} finalizeEvent ea unlisten = Event gl (evCacheRef ea) where gl = do l <- getListen ea ioReactive $ finalizeListen l unlisten -- | Add a finalizer to a listener. finalizeListen :: Listen p a -> IO () -> IO (Listen p a) {-# NOINLINE finalizeListen #-} finalizeListen l unlisten = do addFinalizer l unlisten return l newtype Unlistener = Unlistener (MVar (Maybe (IO ()))) -- | Listen to an input event/behaviour and return an 'Unlistener' that can be -- attached to an output event using 'finalerize'. unlistenize :: Reactive p (IO ()) -> Reactive p Unlistener unlistenize doListen = do unlistener@(Unlistener ref) <- newUnlistener schedulePriority1 $ do mOldUnlisten <- ioReactive $ takeMVar ref case mOldUnlisten of Just _ -> do unlisten <- doListen ioReactive $ putMVar ref (Just unlisten) Nothing -> ioReactive $ putMVar ref mOldUnlisten return unlistener where newUnlistener :: Reactive p Unlistener newUnlistener = Unlistener <$> ioReactive (newMVar (Just $ return ())) -- | Cause the things listened to with unlistenize to be unlistened when the -- specified listener is not referenced any more. finalerize :: Unlistener -> Listen p a -> Reactive p (Listen p a) finalerize (Unlistener ref) l = ioReactive $ finalizeListen l $ do mUnlisten <- takeMVar ref fromMaybe (return ()) mUnlisten putMVar ref Nothing -- | Create a behaviour with the specified initial value, that gets updated -- by the values coming through the event. The \'current value\' of the behaviour -- is notionally the value as it was 'at the start of the transaction'. -- That is, state updates caused by event firings get processed at the end of -- the transaction. hold :: a -> Event p a -> Reactive p (Behaviour p a) hold initA ea = do bsRef <- ioReactive $ newIORef (BehaviourState initA Nothing) unlistener <- unlistenize $ listen ea $ \a -> do bs <- ioReactive $ readIORef bsRef ioReactive $ writeIORef bsRef $ bs { bsUpdate = Just a } when (isNothing (bsUpdate bs)) $ onFinal $ do bs <- readIORef bsRef let newCurrent = fromJust (bsUpdate bs) bs' = newCurrent `seq` BehaviourState newCurrent Nothing evaluate bs' writeIORef bsRef bs' let gl = do l <- getListen ea finalerize unlistener l beh = Behaviour { underlyingEvent = Event gl (evCacheRef ea), sample = ioReactive $ bsCurrent <$> readIORef bsRef } return beh -- | Sample the behaviour at the time of the event firing. Note that the 'current value' -- of the behaviour that's sampled is the value as at the start of the transaction -- before any state changes of the current transaction are applied through 'hold's. attachWith :: Typeable p => (a -> b -> c) -> Event p a -> Behaviour p b -> Event p c attachWith f ea bb = Event gl cacheRef where cacheRef = unsafePerformIO $ newIORef Nothing gl = do (l, push, mvNode) <- ioReactive newSink unlistener <- unlistenize $ linkedListen ea (Just mvNode) $ \a -> do b <- sample bb push (f a b) finalerize unlistener l -- | Variant of attachWith defined as /attachWith (,)/ attach :: Typeable p => Event p a -> Behaviour p b -> Event p (a,b) attach = attachWith (,) -- | Variant of attachWith that throws away the event's value and captures the behaviour's. tag :: Typeable p => Event p a -> Behaviour p b -> Event p b tag = attachWith (flip const) -- | Listen to the value of this behaviour with an initial callback giving -- the current value. Can get multiple values per transaction, the last of -- which is considered valid. You would normally want to use 'listenValue', -- which removes the extra unwanted values. listenValueRaw :: Behaviour p a -> Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ()) listenValueRaw ba mMvNode handle = do a <- sample ba handle a linkedListen (underlyingEvent ba) mMvNode handle -- Clean up the listener so it gives only one value per transaction, specifically -- the last one. tidy :: (Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ())) -> Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ()) tidy listen mMvNode handle = do aRef <- ioReactive $ newIORef Nothing listen mMvNode $ \a -> do ma <- ioReactive $ readIORef aRef ioReactive $ writeIORef aRef (Just a) priority <- case mMvNode of Just mvNode -> do node <- ioReactive $ readMVar mvNode return (noSerial node) Nothing -> return maxBound when (isNothing ma) $ schedulePriority2 priority $ do Just a <- ioReactive $ readIORef aRef ioReactive $ writeIORef aRef Nothing handle a -- | Listen to the value of this behaviour with a guaranteed initial callback -- giving the current value, followed by callbacks for any updates. linkedListenValue :: Behaviour p a -> Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ()) linkedListenValue ba = tidy (listenValueRaw ba) -- | Listen to the value of this behaviour with a guaranteed initial callback -- giving the current value, followed by callbacks for any updates. listenValue :: Behaviour p a -> (a -> Reactive p ()) -> Reactive p (IO ()) listenValue ba = linkedListenValue ba Nothing -- | Variant of 'listenValue' that takes an IO action. listenValueIO :: Behaviour p a -> (a -> IO ()) -> Reactive p (IO ()) listenValueIO ba handle = listenValue ba (ioReactive . handle) eventify :: Typeable p => (Maybe (MVar (Node p)) -> (a -> Reactive p ()) -> Reactive p (IO ())) -> Event p a eventify listen = Event gl cacheRef where cacheRef = unsafePerformIO $ newIORef Nothing gl = do (l, push, mvNode) <- ioReactive newSink unlistener <- unlistenize $ listen (Just mvNode) push finalerize unlistener l -- | An event that fires once for the current value of the behaviour, and then -- for all changes that occur after that. valueEvent :: Typeable p => Behaviour p a -> Event p a valueEvent ba = eventify (linkedListenValue ba) instance Typeable p => Applicative (Behaviour p) where pure = constant Behaviour u1 s1 <*> Behaviour u2 s2 = Behaviour u s where cacheRef = unsafePerformIO $ newIORef Nothing u = Event gl cacheRef gl = do fRef <- ioReactive . newIORef =<< s1 aRef <- ioReactive . newIORef =<< s2 l1 <- getListen u1 l2 <- getListen u2 (l, push, mvNode) <- ioReactive newSink unlistener1 <- unlistenize $ runListen l1 (Just mvNode) $ \f -> do ioReactive $ writeIORef fRef f a <- ioReactive $ readIORef aRef push (f a) unlistener2 <- unlistenize $ runListen l2 (Just mvNode) $ \a -> do f <- ioReactive $ readIORef fRef ioReactive $ writeIORef aRef a push (f a) (finalerize unlistener1 <=< finalerize unlistener2) l s = ($) <$> s1 <*> s2 -- | Let event occurrences through only when the behaviour's value is True. -- Note that the behaviour's value is as it was at the start of the transaction, -- that is, no state changes from the current transaction are taken into account. gate :: Typeable p => Event p a -> Behaviour p Bool -> Event p a gate ea = justE . attachWith (\a b -> if b then Just a else Nothing) ea -- | Transform an event with a generalized state loop (a mealy machine). The function -- is passed the input and the old state and returns the new state and output value. collectE :: Typeable p => (a -> s -> (b, s)) -> s -> Event p a -> Reactive p (Event p b) collectE f z ea = do rec s <- hold z es let ebs = attachWith f ea s eb = fst <$> ebs es = snd <$> ebs return eb -- | Transform a behaviour with a generalized state loop (a mealy machine). The function -- is passed the input and the old state and returns the new state and output value. collect :: Typeable p => (a -> s -> (b, s)) -> s -> Behaviour p a -> Reactive p (Behaviour p b) collect f zs bea = do let ea = eventify . tidy . linkedListen $ underlyingEvent bea za <- sample bea let (zb, zs') = f za zs rec bs <- hold (zb, zs') ebs let ebs = attachWith f ea (snd <$> bs) return (fst <$> bs) -- | Accumulate on input event, outputting the new state each time. accumE :: Typeable p => (a -> s -> s) -> s -> Event p a -> Reactive p (Event p s) accumE f z ea = do rec let es = attachWith f ea s s <- hold z es return es -- | Accumulate on input event, holding state. accum :: Typeable p => (a -> s -> s) -> s -> Event p a -> Reactive p (Behaviour p s) accum f z ea = do rec s <- hold z (attachWith f ea s) return s -- | Count event occurrences, starting with 1 for the first occurrence. countE :: Typeable p => Event p a -> Reactive p (Event p Int) countE = accumE (+) 0 . (const 1 <$>) -- | Count event occurrences, giving a behaviour that starts with 0 before the first occurrence. count :: Typeable p => Event p a -> Reactive p (Behaviour p Int) count = hold 0 <=< countE splitLessThan :: Ord k => k -> Map k a -> (Map k a, Map k a) splitLessThan k m = let (lt, mEq, gt) = M.splitLookup k m in (lt, case mEq of Just eq -> M.insert k eq gt Nothing -> gt) unlistenLessThan :: IORef (Map ID (IO ())) -> ID -> IO () unlistenLessThan unlistensRef iD = do uls <- readIORef unlistensRef let (toDelete, uls') = splitLessThan iD uls do writeIORef unlistensRef uls' {-when (M.size toDelete > 0) $ putStrLn $ "deleting "++show (M.size toDelete) -} forM_ (M.elems toDelete) $ \unl -> unl -- | Unwrap an event inside a behaviour to give a time-varying event implementation. switchE :: Typeable p => Behaviour p (Event p a) -> Event p a switchE bea = Event gl cacheRef where cacheRef = unsafePerformIO $ newIORef Nothing unlistensRef = unsafePerformIO $ newIORef M.empty gl = do -- assign ID numbers to the incoming events beaId <- collect (\ea nxtID -> ((ea, nxtID), succ nxtID)) (0 :: ID) bea (l, push, mvNode) <- ioReactive newSink unlistener1 <- unlistenize $ linkedListenValue beaId (Just mvNode) $ \(ea, iD) -> do let filtered = justE $ attachWith (\a activeID -> if activeID == iD then Just a else Nothing ) ea (snd <$> beaId) unlisten2 <- listen filtered $ \a -> do push a ioReactive $ unlistenLessThan unlistensRef iD ioReactive $ modifyIORef unlistensRef (M.insert iD unlisten2) finalerize unlistener1 l -- | Unwrap a behaviour inside another behaviour to give a time-varying behaviour implementation. switch :: Typeable p => Behaviour p (Behaviour p a) -> Reactive p (Behaviour p a) switch bba = do ba <- sample bba za <- sample ba (ev, push, mvNode) <- ioReactive newEventLinked activeIDRef <- ioReactive $ newIORef (0 :: ID) unlistensRef <- ioReactive $ newIORef M.empty unlisten1 <- listenValueRaw bba (Just mvNode) $ \ba -> do iD <- ioReactive $ do modifyIORef activeIDRef succ readIORef activeIDRef unlisten2 <- listenValueRaw ba (Just mvNode) $ \a -> do activeID <- ioReactive $ readIORef activeIDRef when (activeID == iD) $ do push a ioReactive $ unlistenLessThan unlistensRef iD ioReactive $ modifyIORef unlistensRef (M.insert iD unlisten2) hold za (finalizeEvent ev unlisten1) -- | Throw away all event occurrences except for the first one. once :: Typeable p => Event p a -> Reactive p (Event p a) once ea = justE <$> collectE (\a active -> (if active then Just a else Nothing, False)) True ea -- | Execute the specified 'Reactive' action inside an event. execute :: Typeable p => Event p (Reactive p a) -> Event p a execute ev = Event gl cacheRef where cacheRef = unsafePerformIO $ newIORef Nothing gl = do (l', push, mvNode) <- ioReactive newSink unlistener <- unlistenize $ do l <- getListen ev runListen l (Just mvNode) $ \action -> action >>= push finalerize unlistener l' -- | Cross the specified event over to a different partition. crossE :: (Typeable p, Typeable q) => Event p a -> Reactive p (Event q a) crossE epa = do (ev, push) <- ioReactive newEvent unlisten <- listenIO epa $ synchronously . push return $ finalizeEvent ev unlisten -- | Cross the specified behaviour over to a different partition. cross :: (Typeable p, Typeable q) => Behaviour p a -> Reactive p (Behaviour q a) cross bpa = do a <- sample bpa ea <- crossE (underlyingEvent bpa) ioReactive $ synchronously $ hold a ea